BIM 241 – Introduction to Magnetic Resonance Imaging

Fall 2020

Instructor:	Audrey Fan (<u>apfan@ucdavis.edu)</u> Phone: 530-754-0806, Office: 1590 Drew Avenue, Davis Office Hours (virtual): Tuesdays at 10:00am and by appointment <u>https://ucdavis.zoom.us/j/2428492721</u>		
TA:	Greg Wheeler (gjwheeler@ucdavis.edu) Office Hours (virtual): Wednesdays at 11:00am <u>https://ucdavis.zoom.us/j/4964239243</u>		
Course Lectures:	Tuesdays and Thursdays, 8:30 – 9:50am https://ucdavis.zoom.us/j/94482937263?pwd=RjN6T0RsSVZxRHVHWU9G0U500VFwQT09		
Prerequisites:	Background in engineering with basic knowledge of signals and systems, e.g., Fourier transforms and convolution. Familiarity with linear algebra and MATLAB software.		
Learning Goals:	 By the end of the course, students will be able to Describe the basic hardware, acquisition, and reconstruction concepts of magnetic resonance imaging (MRI). Employ fundamental concepts of MRI physics to characterize and make predictions about image properties. Implement an advanced MRI acquisition or reconstruction approach in MATLAB to demonstrate the effect of optimizing design parameters. 		
Text:	"Principles of Magnetic Resonance Imaging" by Dwight G. Nishimura		
Optional Sources:	"Handbook of MRI Pulse Sequences." M.A. Bernstein, K.F. King, X.J. Zhou. Elsevier Academic Press, Burlington, MA, 2004		
	<i>"Principles of Magnetic Resonance Imaging: A Signal Processing Approach."</i> Z-P. Liang, P.C. Lauterbur. Series in Biomedical Engineering. IEEE Press, New York, 2000		
Grading:	The final grade reflects our beset assessment of your understanding of the material and will be weighted as:		
	Problem Sets Midterm (in-class) Final Project	40% 20% 40%	
Problem Sets:	Problem sets are due at the beginning of lecture on the due date. Collaboration with one classmate is permitted, provided the write-up is your own and you provide the name of your partner on your solutions.		
	The problem sets and the final project of the course will rely heavily on MATLAB. All figures should have labeled axes and colorbar scales where appropriate.		

Tentative schedule:

Dat	te	Торіс	Notes	Problem Sets
Oct 1	Thu	1. Course overview and MRI introduction	Nishimura Ch. 3.1	
Oct 6	Tue	2. Physics of MRI: Bloch equation	Nishimura Ch. 4.4 – 4 5	
Oct 8	Thu	3. Signal equation and Fourier interpretation (k-space)	Nishimura Ch. 5.1- 5.3	Pset 1 due
Oct 13	Tue	4. Signal equation continued	Nishimura Ch. 5.4 – 5.6	
Oct 15	Thu	5. Sampling, field of view, and spatial resolution	Nishimura Ch. 5.7	Pset 2 due
Oct 20	Tue	6. Spin echoes, inversion recovery, and image contrast	Nishimura Ch. 7.1 – 7.2, 7.4	
Oct 22	Thu	7. Signal-to-noise ratio in MRI	Nishimura Ch. 7.5	Pset 3 due
Oct 27	Tue	8. Radiofrequency (RF) excitation and rotating frame	Nishimura Ch. 6	
Oct 29	Thu	9. Small-tip approximation to RF pulses, <i>Class project overview</i>		Pset 4 due
Nov 3	Tue	10. Fourier design of RF pulses and review	Class notes	
Nov 5	Thu	MIDTERM (self-paced)		
Nov 10	Tue	11. Partial k-space, conjugate synthesis, field mapping	Bernstein Ch. 13.4 – 13.5	
Nov 12	Thu	12. Reconstruction of non-Cartesian data	Bernstein Ch. 13.2	Project proposal due
Nov 17	Tue	13. Gridding, apodization and sampling density	Bernstein Ch. 13.2	
Nov 19	Thu	14. Parallel imaging: Image space methods	Deshmane A et al., <i>JMRI</i> 2012	Pset 5 due
Nov 24	Tue	15. Parallel imaging: k-space methods	Deshmane A et al., <i>JMRI</i> 2012	Project update due
Nov 26	Thu	THANKSGIVING DAY		
Dec 1	Tue	16. Echo planar imaging and functional MRI	Bernstein Ch. 16.1	
Dec 3	Thu	17. Diffusion and perfusion imaging	Berstein Ch. 17.1 – 17.2	
Dec 8	Tue	FINAL PROJECT PRESENTATIONS		
Dec 10	Thu	FINAL PROJECT PRESENTATIONS		