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Introduction: 

Iron overload results from the body accumulating excess amounts of iron in the tissue,              
which can cause organ failure and death. MRI’s T2* measurement is a clinically useful              
biomarker for iron quantification because of iron’s paramagnetic properties that cause           
inhomogeneity and increase the local T2* measurement. T2* measurements of the heart and             
liver are the strongest prognostic markers of mortality for these patients.  

 
However, there are many challenges that MRI faces with the iron assessment technique.             

T2* calculations are easily affected by motion artifacts. Motion artifacts leads to suboptimal             
calculations of T2*, particularly in the heart, which is a critically important organ to assess for                
iron accumulation. Thus, longer MRI scans with gating and breath holding techniques are             
currently used to help reduce these artifacts during scans. However these imaging techniques             
are limiting for pediatric and geriatric patients, as well as patients with motor control disorders.               
They require longer scan times, long breath holds and may even require sedation, which adds               
risk and expense for the patient. This indicates that there is a need for faster and safer MRI                  
scanning techniques for iron accumulation assessment. 

 
There are more robust methods for capturing images with motion than Cartesian, such as              

radial and spiral k-space sampling methods, such as rosette trajectories. Rosettes are            
flower-like k-space trajectories that utilize frequent sampling of the center of k-space to reduce              
noise and produce diffuse aliasing artifacts. Thus, this paper aims to improve the techniques for               
quantification iron overload via T2* MRI assessment by utilizing rosette trajectories to reduce             
motion artifacts during these scans. 

Methods: 
Imaging was performed on a GE Signa 450W MRi system with a 20-channel cardiac              

coil (GE Healthcare, Waukesha, WI) [1]. The imaging parameters used for Cartesian and             
Rosette are described in Table 1 from Bush [1]. There are 2 imaging datasets that are included                 
in this study. There are 6 phantoms containing ferumoxytol. Cartesian and Rosette Multi Echo              
images were acquired for these phantoms in axial orientation. For vivo imagings, there are eight               
healthy volunteers and eighteen patients undergoing T2* iron assessment. The reproducibility           
experiments were performed in breath hold scans, while the motion sensitivity experiments in             
were done by comparing free breathing and failed breath-hold T2* scans from healthy subjects.  

 
To determine the number of petals for rosette scans are defined as class II rosettes based                

on the improvement of the work of Noll [2] and Li et al [6].  
f  N  is odd, q { , k }, {Z }i  =  N

N+2 + N
2(k−1)  ∈ Z+  +  

(1) 
f  N  is even, q { , k }, {Z }i  =  N

N+2 + N
4(k−1)  ∈ Z+  +  

 
where N is a number of petals demonstrated in the k-trajectories, k is an incrementing               
parameter, and q is a shape parameter defined as ( , where , are         /ωω2 1 > ) ω1 > ω2   ω1  ω2  
rotational frequencies. As shown in Figure 1 from Bush et al., there are multiple echoes (i.e.                
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petals) in a single repetition with the trajectory sampling window centered at each k-space              
center crossing.  
 

In order to constrain the sequence for elimination of eddy current and gradient             
timing-related artifacts, the maximum slew rate and the gradient amplitude are set as 75 mT/m/s               
and 40 mT/m, respectively. In this study, there were a total of 800 rotations performed, with                
137.5 degrees for each repetition. A total readout duration was 16 msec with selected q at 2.2.  

Results: 

The obtained results are shown in Fig. 3 in Bush et. al. The heart and liver are visualized 
as the reconstructed image and the T2* map respectively. The images were qualitatively scored 
from 1-5 by radiologists for the 3 techniques.  

 
Rosette R2* (1/T2*) was linearly correlated with ferumoxytol concentration (r2 = 1.00) 

and not different from its corresponding Cartesian values (P = 0.16). During breath-holding, 
ungated rosette liver and heart T2* had lower spatial CoV and higher-qualitative scores (liver: 
3.3 Cartesian, 4.7 rosette, heart: 3.0 Cartesian, 4.5 rosette, P = 0.005). During free-breathing and 
failed breath-holding, Cartesian images had average image quality with visible artifacts, on the 
other hand, rosette maintained good image quality, with minimal artifacts (P = 0.001).  

Limitations/Discussions:  
Rosette has comparable T 2* to Cartesian trajectories with high image quality, spatial 

resolution, reproducibility, low motion artifacts and reduced spatial variability to clinical 
procedure. The advantages over previous work is that there is no patient motion correction, it is 
ungated and has same scan times as the clinical standard.  

 
Some limitations include the limited number of subjects, increased chance of gradient 

timing imperfections in Non-Cartesian sampling, the incorporation of motion directly into the 
reconstruction model and that Rosette T2* maps are more sensitive to off-resonance artifacts 
than the typical cartesian maps. 

Individual Explorations:  
For our individual explorations, we aim to evaluate the effects of changing the number of petals 
and inclusion of off-resonant sources on the reconstructed images along with SNR calculations 
of Rosette, Cartesian and phantom data that was provided to us.  
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I. Linh’s Individual Exploration 
 
Introduction: 
  

Quantitative T2* MRI is clinically useful for diagnosing many diseases by determining            
tissue iron content. However, motion artifacts from patient’s movements usually influence the            
results of estimating T2*. In order to reduce the motion artifacts, people usually use breath               
holding as well as gating methods that eliminate respiratory and cardiac motion. However, these              
methods take longer scan time, and inefficient, which create more risk and are expensive.              
Therefore, rosette k-space trajectories were developed to reduce these risks and reduce motion             
artifacts for better quantification of T2*.  
 

In my experiment, the goal is to explore the trade-off of changing number of petals in                
rosette trajectories to motion artifacts and understand how it influences T 2* quantifications.  
 
Methods:  
 

I. Phantom imaging:  
To assessing with the motion artifacts, the k-space data for a pulsing circle with              

diameter sinusoidally oscillating at input frequency was generated with the center at [0,0],             
starting time of diameter oscillation of 0.12 sec, frequency of oscillation of 1 Hz, amplitude of                
oscillation of 40, and the midpoint of diameter oscillation at 180. For this experiment, the               
maximum slew rate and maximum gradient amplitude were constrained 80 mT/m/ms and 40             
mT/m, respectively. The total readout time per oscillation is 15 msec. The rotational angle is               
137.5 degrees for each repetition. Echo time (TE) starts at 0.8 msec, with duration as 0.004                
msec, and ends at 2.104 msec.  
 

II. To determine the number of petals in the k-trajectories:  
By applying the equation (1) described above, the number of petals was generated by              

changing the value of q with is the oscillation frequency ( , and is the      ω1     πf )ω1 = 2   ω2   
revolution frequency ( , where f is the lowest frequency that reaches the hardware  )ω2 = q × ω1            
limitations. In this study, the experiment is done with different numbers of petals from 4 to 13                 
(Figure 2, 3 in LL Appendix) with corresponding q as shown in Table 1. To reduce the                 
computational time, we ran the analysis with 80 rotations as shown in Figure 1.  

 
III. Image reconstruction:  

The images were constructed by a parallel imaging with the optimization equation as             
described in Equation (2) from Bush et al [1].  
 
IV. Motion artifacts calculation: 

To evaluate the motion artifacts at different numbers of petals, a localized            
motion-artifact metric is used in this experiment from Cheng et al [4]. Gradient entropy was               
recommended as a good metric for motion artifacts since it defines the image intensity gradient               
[4, 7]. In this experiment, the localized pixel of interest was selected at location of [256, 256] in                  
phantom images. The gradient entropy metric (in mm) will be calculated based on the pixel of                
interest to estimate the motion.  
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V. T2* Fitting :  
T2* relaxation refers to a decay of transverse magnetization (Mxy) and is one of the               

main determinants of image contrast. T 2* is always less than or equal T 2. Given the TE, T2* was                  
estimated from a measured T 2-weighted data (in our case, the phantom images). The signal is               
defined as:  

 A xp(− E/T 2)S =  × e T (2) 
 
Results: (all figures are displayed in LL Appendix) 
 

The rosette trajectories with varying numbers of petals (i.e. numbers of echo times)             
produced results with different image reconstruction from phantom imagings as shown in            
Figure 4. The gradient amplitude increases from 27.41 mT/m to 29.86 mT/m as we increase the                
number of petals from 4 to 13 as shown in Table 1. It takes longer for the computational time to                    
run at q=0.6 (i.e. 5 petals) with 2.82 seconds, and faster at q=0.27 (i.e. 11 petals) with 1.96                  
seconds. Motion artifacts changes are displayed in Figure 5, which shows that when we increase               
the number of petals, the motion artifacts corresponding to the pixel of interest will significantly               
reduce to around -0.2 mm. Figure 6 illustrates the T2* fitting based on the given TE, and we                  
have high T 2* values for 7 and 13 petals. Therefore, the optimal number of petals with low                 
motion artifacts and better T2* magnitude should be 7 or 13 petals. However, it takes more time                 
to execute these models as shown in Table 1.  
 
Discussion:  
 

This study introduces the experiment of number of petals in Rosette trajectories to             
evaluate the trade-off between number of petals and motion artifacts. This shows that as we               
increase the number of petals, the motion artifacts tend to reduce, and the computational time is                
related to the value of q (i.e. higher q takes more time to run). However, there are still some                   
fluctuated results in motion metric performance as shown in Figure 5. At 6 and 9 petals, there                 
are more motion artifacts in the center of the image. This can be explained by the smaller values                  
of q for 6 and 9 petals (i.e. the revolutionary frequency should be really smaller rather than the                  
oscillation frequency). Another explanation is that there are not enough rotations to create a              
motion-robust image since we only experienced 80 rotations. Therefore, there are some            
limitations in this study. First, there are likely more factors that influence the motion artifacts,               
not only the number of petals. Since the value of q relates to the shape of the petals, and it                    
shows in Table 1 and Figure 5 that there should be a relationship between q and motion artifacts                  
metric. In addition, the number of rotations or repetitions should be another issue since we only                
experiment with 80 rotations. Moreover, the computational time is based on the MATLAB             
runtime, so for every loop that we calculated it might memorize the previous data, so the                
computational time might not be exactly accurate. Furthermore, the motion metrics are based on              
the gradient entropy from Cheng et al, but it is measuring the intensity at every pixel compared                 
to the pixel of interest. However, we only experiment with only 1 pixel of interest, so we should                  
extend this for other kernels. Finally, T2* was quantified by fitting T2 based on given phantom                
imaging only and there is a lack of actual Cartesian T 2* data to compare so it is hard to                   
determine the accuracy of T2* in this study. 
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Further improvements:  
 

For future explorations, we should work more on calculating the time scan per petal, and               
investigate the trade-off with other factors, for example, number of rotations, different range of              
petals, and undersampling influences. For this experiment, we only work with phantom            
imaging, but we should extend this work with vivo imagings, and find a more sophisticated               
mapping algorithm for T 2* quantification.  
 
 

II. Valerie’s Individual Exploration  
Introduction:  
 

Signal-to-Noise-Ratio (SNR) is one of the common image quality measurements          
performed on images. Higher SNR intensities indicates how much more signal than noise is in               
the image. By having higher signal intensities (or lower noise) acquired, the image data will be                
more accurate. Because the rosette trajectories improved the image quality by reducing noise             
and motion artifacts, SNR comparisons were performed to determine how rosette trajectory in             
vivo images compared to traditional Cartesian images, and how rosette trajectories data was             
affected by different levels of noise and motion. 

 
Methods:  

I. In Vivo  Cartesian and Rosette Data 
 
The Rosette in vivo image data are from a breath held, ungated cardiac scan with               

short-axis slice prescription. The patient has liver iron but normal myocardial T2*. There are 5               
echo images and each image has 256 x 256 pixels at a resolution of 1mm and FOV of 25cm.                   
The echo times ranged from 0.8 to 13.6 ms. See table 1 in Bush et. al paper[1] for the rest the                     
parameter values. 

 
The Cartesian image data are the clinical reference to the reference data. It is ECG/PPG               

gated cardiac scan. There are 8 echo images and each image has 256 x 256 pixels at a                  
resolution of 1.5mm and FOV of 40cm. The echo times ranged from 1.1 to 10.2. See table 1 in                   
Bush et. al paper[1] for the rest the parameter values for this data. 

 
Both datasets only contain the real values of the intensities and were normalized to an               

intensity range of 0-255 values by finding the maximum value between both datasets and              
multiplying the data in both datasets by a factor of 255/(max value). (See Equation 1 in VP                 
Appendix) 

II. Dynamic LV Phantom Data 
 
The dynamic left ventricle phantom image data is created with the rosette_test.m code.             

The phantom simulates a left ventricle by oscillating a ring with 250mm diameter as the heart                
wall and a ball in the center of the ring as the lumen with a 180mm diameter. The phantom is                    
about double the size of a typical humans’ heart, but this was to artificially decrease the FOV                 
since we had problems changing the sampling of the k-space and k-trajectory data. This way               
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we could see in better detail how the phantom data is affected by adding noise and increasing                 
oscillation.  

 
The phantom data is 512 x 512 pixels with 12 echoes ranging from 1 to 3432 ms. These                  

echo times seem long, but were given to us by the authors. The image intensity data is                 
complex.  To add noise to the dataset, I added these variables: 

 
● noise2 = amp*randn([1 length(heart_data)]); 
● amp = [0, 10-6, 10-4, 10-2, 1, 10, 100]; 

 
where noise2 is the random gaussian noise, amp is the amplitude of the noise, and               

heart_data provides the size of the k-space dataset. The noise is then added to data, the k-space                 
variable in the code. 

 
To add noise, I multiplied each image pixel with a unique noise value found with noise2.                

To keep the random noise constant, I used the function rng(1) to maintain the same random                
noise and only changed the amplitude (amp). 

 
To change the motion, I changed the variable ampl, which is the oscillation amplitude.              

The values I used for the oscillation amplitudes were [0, 20, 40, 60, 80, 100]. This amplitude is                  
defined as 10mm x resolution in the code. Thus, the resolution is increasing as the motion                
increases. 

III. SNR Calculations  
 
For the in vivo data, I calculated the SNR with Equations 1-4 (see appendix) in a                

separate code script called VP_SNR_Code.m. Using ROIs and finding the mean standard            
deviation from all the ROIs has been shown to be a useful technique for calculating the noise in                  
an image since the noise distribution should not change much across the image.[3] Thus, the               
mean of the standard deviation of ROI is a better approximation of the rician noise in the in vivo                   
data. 

 
For the phantom data, I calculated the SNR with equations 1, 2, and 5 (see appendix).                

The reason for using equation 5 is that since the code creates the phantom data without noise or                  
without noise from motion, we can find the noise of noisy images by simply subtracting the no                 
noise image from the noisy one. For the added noise experiment, the no noise image is the                 
phantom image with no added noise. For the oscillation experiment, the no noise image is the                
phantom with an oscillation amplitude of zero. 

Results: 
 

1. In vivo  Cartesian vs. Rosette data 
 

The data for both of these graphs can be found in Table V1 and V2, and their images are 
in the figures section of the VP appendix. 
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Figure V1: SNR magnitude over echo time for Rosette (top) and   Figure V2: SNR magnitude of each ROI over echo time for Rosette 
Cartesian (bottom) in vivo image data.   (top) and Cartesian (bottom) in vivo image data. 
 
 

2. Dynamic Phantom Data: a. Added Noise b. Varying Oscillation/Motion 

Figure V3: SNR Magnitude over time at each amplitude Figure V4: SNR Magnitude over time at each oscillation amplitude. 
of added random gaussian noise. 
 

See Tables V3 and V4 for the data values of these graphs and their images in the VP 
Appendix.  
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Discussion: 
 

The comparison between the rosette and cartesian image data shows that in both cases,              
the SNR tends decreases as echo time increases, which is to be expected due to signal decay.                 
Overall, the SNR for the rosette data is higher than cartesian data including with the ROIs,                
except for the left lung. A direct comparison between the Cartesian and Rosette is not useful                
here due to the differences in FOV, echo times and resolutions which can drastically affect the                
SNR on its own. On the other hand, the SNR trends between the two methods for the ROI data                   
show that the SNR values are more steady for the Rosette at every echo. Since the lungs have                  
the least amount of signal compared to the other tissues, this steadiness indicates that the noise                
does not change much at each echo time for the Rosette, where it changes drastically depending                
on the echo time for the Cartesian method. Thus, the Rosette seems to limit changes in noise in                  
images with motion artifacts. 

 
For the phantom data, the graphs show that as the amplitude of the noise increases, the                

SNR values decrease for every echo image. The same is shown for increasing the oscillation               
amplitude. However, the change in noise amplitude seems to affect the Rosette method more              
strongly than changes in motion. This is likely because the amount of noise created from pure                
motion is smaller than the changes in noise amplitude that I used. Lastly, the changes in                
oscillation amplitude seem to not affect the SNR at the echo time of 1872ms, despite all the                 
other echoes being affected by the change in amplitude. This may be due to the noise created                 
by the motion of the phantom is not affecting the “tissue signals” that are being picked up at that                   
echo time. 

Further improvements:  
 

For the in vivo data, the FOV and resolutions need to be fixed for a more comparable                 
result. Furthermore, retaking the scans at the same echo times would further improve the SNR               
value comparison between the two methods. 

 
For the dynamic phantom, the next step would be to see how the SNR is affected by                 

added noise and motion together to see if there are any interesting trends at certain echo times,                 
like at echo time 1872ms. Furthermore, it would be interesting to compare the SNR results of a                 
static phantom to the dynamic phantom, to see how well the rosette method works on static                
MRI scan data. 

III. Janani’s Individual Exploration 
 
Introduction: 
 

Off-resonant (Off-Res) effects occur when the nuclear precession is out of phase or at a               
different frequency than the resonant frequency. The resultant dephasing contributes to a signal             
loss additional to intrinsic T2 dephasing. Off-Res sources may arise due to main field variations               
caused by magnetic design, susceptibility variations at a tissue-level or chemical shifts (eg. at              
1.5T, there is a 220Hz off-resonance between fat and water). 

Including the contribution of off-res sources, the receive signal equation becomes: 
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e e dxdys (t) =  ∫
 

x,y
m (x, )y  −2πi(k (t)x+k (t)y)x y −2πi∆f t   

With this exploration, I aim to explore the potential effects of off-resonant sources on              
the final reconstructed image . 

Methods: 
 

I. To generate the reconstructed images at off-res conditions, the following procedure           
was used: 

1. The frequency at which the off-res images should be generated was identified (f=±1,             
±16, ±64, ±128Hz) 

2. The dynamic LV phantom portion was used, which read in generated data from the              
functions kspace_ball.m and kspace_dyn_circle.m 

3. The time progression variable was identified as: t = TE0:dt:TE0+dt*(length(k(1,          
k_start:k_end)) - 1); where TE0 is excitation time, dt the k-space sampling rate             
and k_start, k_end represent the first and last k points 

4. An element-wise multiplication was performed between the already generated on-res          
data and e -2πift (as per eqn above) and reconstructed using gridding reconstruction 

5. The images are displayed for the 4th echo time = 937ms 
 

II. To compare the generated off-res images with the reference/ ground truth           
on-resonance, the following procedure was used: 

1. An ROI of size 140x190 was selected in the center region of the on and off-res                
images for comparison 

2. The ROIs were passed through a function which calculated the image quality metrics             
between the predicted (off-res image ROI) and actual (on-res image ROI) images 

3. Image quality metrics were used in accordance with metrics used in [5] 
4. Quantitative metrics used are MSE, PSNR, R 2 Value, RMSE, NRMSE, MAPE and            

SSIM. The metrics and their practical application are described in detail in JAA             
Appendix, Supplementary Material, pg. 54 

III. To provide a conclusive result between Linh’s, Valerie and my work, the SNRs of on               
and off-res images with different numbers of petals were calculated as follows: 

1. To incorporate a change in the number of petals, the shaping factor (q) was varied 
2. The number of petals was changed between 5, 7 and 13 petals. 11 petals are the                

original number of petals, so it was not considered in this section of the study.               
Results for 11 petals are shown in Results, Section I. 

3. Off-res images were generated as described in Methods,  Section I at constant 64Hz 
4. Using Valerie’s SNR method of adding Rician noise, the SNRs were calculated  
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Results: 
I. Off-Res at Diff Freq: Refer Fig. 1 A-P in JAA Appendix, pg. 47-50 
II. Quantitative Metrics: Refer Table 1 in JAA Appendix, pg. 53  

III. Effect of Changing No. of Petals on SNR of Off-Res Images: Refer Fig. 2 A-F,               
pg. 51-52 and Table 2, pg. 54 in JAA Appendix  

The lowest MSE, RMSE, NRMSE AND MAPE are obtained when the off-res F = ±1Hz               
with values 0.032, 0.178, 0.098 and 11.3 respectively. The highest values of these metrics are at                
±128Hz with values 0.83, 0.911, 0.5 and 44.019 respectively. The highest values of R 2 , PSNR                
and SSIM are calculated for a F= ±1Hz at 0.983, 63.127 and 0.491 respectively. The               
corresponding lowest values are at 128Hz with 0.579, 48.943 and 0.166  respectively.   

The highest SNR value of 202.54 for on-res and 201.08 for off-res is obtained for 7                
petals with a constant F = 64Hz. The lowest SNR is for 5 petals at 175.01 for on-res and                   
179.05 for off-res . The figures obtained show good correlation with the obtained SNR results. 

Discussion: 
 

I. Off-Resonance Image Generation 
 
The reconstructed images were generated for ±(1, 16, 64, 128Hz). The negative            

frequency reconstructions did not show any visible difference from their positive frequency            
counterparts. The results for the positive and negative frequencies can be found in the Appendix               
Section, Fig. 1 (A-P) , pg. 50-51 

 
The reconstructed image with off-res sources at 1Hz seems quite like the original, with              

no visible differences. At 16Hz, we start to see a drop in image quality. The inner and outer                  
circle do not have a clear barrier of distinction like the black ring visible in the normal image,                  
however, there is still some degree of visibility of the two circles. The image at 64Hz is                 
significantly different from the on-res image in that there is no distinction between the two               
circles, except for the difference in color. This could be due to aliasing in the off-res image. At                  
128Hz, the reconstructed image is completely different from the on-res image and the outer              
circle is nearly completely aliased.  

 
The dynamic phantom is constructed such that it can mimic the Left Ventricle, which              

implies that the inner and outer circle have different T2 values. From the off-res images, it is                 
safe to say that the T2 of the inner circle (resembling blood) is higher than that of the outer                   
circle (resembling heart tissue), which holds true when compared with biological T2 values.             
The inner circle seems to show lower signal decay, implying a higher T2 value. However, the                
outer circle in comparison shows a quick signal decay with the inclusion of off-res sources,               
implying a lower T2 time. 
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II. Quantitative Metrics 

 
Consistent with the findings in Results Section I., the best performing image, F=1Hz has              

the highest PSNR, R 2 Value and SSIM with the lowest MSE, RMSE, NRMSE and MAPE. The                
image that was visually the most different from the on-res image at F = 128Hz has the lowest                  
PSNR, R 2 Value and SSIM with the highest MSE, RMSE, NRMSE and MAPE. The              
Quantitative Metrics for the frequencies and their corresponding negative values are quite            
similar, this is probably because there is no visible difference in their image quality.  

 
The metrics gradually regressed with an increase in the frequency value. However, it is              

difficult to come to a rigid conclusion about the relationship between the frequency and the               
corresponding reconstructed image quality. In the frequencies considered, the image quality           
decreases with an increase in the |off-res frequency|. 

 
III. Effect of Changing Number of Petals on the SNR of Off-Resonance Images 

 
Using a constant frequency of 64Hz, the off-res image generated for a k-space sampling              

trajectory with 7 petals seems to be most similar to the on-res image. This is because of a                  
clearer contrast between the inner and outer circle than for the 5 and 13 petal trajectories. This is                  
consistent with the results obtained in Results , Table 2, pg. 54. The SNR for 7 petals is the                  
highest and the SNR for 5 petals is predictably the lowest. The on-res image is independent of                 
the off-res frequency. This was true for previous sections as well, but is confirmed after a                
comparison of the on-res images generated in mine and Linh’s study . 

 
Future Improvements:  
 

Work on using different types of phantoms over a larger range of frequency values, 
identify better metrics for image quality evaluation, evaluate motion effects of the dynamic 
phantom and explore the degree of sensitivity of non-cartesian trajectories to off-res sources 
compared to their cartesian counterparts. 

Conclusion:  
Increasing the number of petals leads to a decrease in motion artifacts, with optimal              

performance at 7 or 13 petals. There are some limitations in our study such as the assumption of                  
same petal shape, number of rotations, and scan time  in the analysis.  

For the in vivo data, the Rosette method has higher SNR values than the Cartesian               
method, but have different values for their FOVs, resolutions, and echo times. The ROI SNR               
trends did show that noise is more constant in the Rosette images and shows that the Rosette is                  
not as affected by the noise caused by the motion artifacts from the heart. The phantom                
experiments showed that random gaussian noise affects SNR more than the motion. At the echo               
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time 1872ms, the motion did not seem to change the SNR at all. Thus, the motion may not be                   
affecting the signal from the tissues that are detected at that echo time. 

For the frequency range considered, there was an overall improvement in quality, with a              
decrease in frequency. This was proven visually and through the image quality metrics of MSE,               
PSNR, R-Squared, RMSE, NRMSE, MAPE and SSIM. The relationship between changing           
number of petals on the SNRs of on and off-res images was also considered and 7 petals was                  
found to have the best performance, with the highest SNR. 
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Appendices: 
 
LL Appendix: 
 
 

Table 1. Corresponding gradient amplitude (mT/m), computational time, and q values 
corresponding to generated number of petals from k-trajectories. 
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Number 
of petals 

q Gradient amplitude 
(mT/m) 

Computational Time (s)  

4 0.5000 27.41 2.33 

5 0.6000 26.28 2.82 

6 0.6667 25.50 2.41 

7 0.4286 28.17 2.52 

8 0.7500 24.52 2.42 

9 0.5556 26.79 1.95 

10 0.4000 28.46 2.26 

11 0.2727 29.57 1.96 

13 0.2308 29.86 2.03 



 

 
Figure 1. (A) Single rosette repetition at q = 0.27, with each petal corresponding to the effective 
echo time . (B) Rotating the rosette repetition by the golden angle (137.5 degree) in k space. (C) 
The corresponding readout gradient and spoiling gradient waveforms are shown. (D) The image 

reconstruct 
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Figure 2. Single repetitions with varying q values to create 4 to 13 petals based on Table 1.  

 

 
Figure 3. Rotating 80 times for the rosette repetition by golden angle (137.5 degree) in k-space  
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Figure 4.  Reconstructed phantom images for varying Rosette trajectories from 4 to 13 petals. 

The motion-induced aliasing artifacts in individual images are reduced as the increasing number 
of petals. Higher number of petals in rosette reconstruction also produce better image quality.  
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Figure 5. A motion metric maps (in grayscale) from phantom images for individual models of 
petals at every pixel compared to the pixel of interest (i.e. [256 256]). The lower the value of 
motion metrics (close to light color) means the intensity of motion is less, and vice versa. The 

scale for this motion metric is from -0.5 to -0.2 (mm)  
 

 
Figure 6. T2* fitting based on the give TE (from 0.8 to 2.1 msec), and the phantom imagings. 

The absolute value of average magnitude of T2* for 7 petals and 13 petals are higher than other 
petal-models.  
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VP Appendix: 
 
Equations: 

Equations V1: NR 20 og ( )S =  * l 10 noise
signal

 

Equation V2: ignal mean(entire image)  s =   

Equation V3: oise mean(noise of  each ROIs)  n =   

Equation V4: oise of  each ROI  std(image of  ROIs)  n =   

Equation V5: oise mean(image with noise image no noise)  n =  −   

 
Tables: 
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Table V1: Rosette SNR Data 

Echo Times 0.8 (ms) 4.6 (ms) 7.6 (ms) 10.6(ms) 13.6(ms) AVG 

Total SNR 13.9135 13.8624 11.5956 10.9339 9.7628 12.0136 

Liver SNR 16.8151 16.5124 15.2369 12.5997 9.3344 14.0997 

RV SNR 17.5079 18.6562 19.0962 18.4146 18.2887 18.3927 

LV SNR 15.9452 15.7880 15.2225 14.2843 13.8737 15.0228 

Left_Lung 
SNR 

5.1272 3.3643 3.2064 4.8104 4.8683 4.2753 

Table V2: Cartesian SNR Data 

Echo Times: 1.1 (ms) 2.4 (ms) 3.7 (ms) 5.0 (ms) 6.3 (ms) 7.6 (ms) 8.9 (ms) 10.2 (ms) AVG 

Total SNR: 8.6864 7.6178 7.7750 8.1132 7.3846 6.3957 6.6193 6.5216 7.3892 

Liver SNR: 13.6704 14.2988 14.0513 13.8749 13.5179 12.9843 12.6509 12.2898 13.4173 

RV SNR: 13.5439 13.2837 13.2500 13.5686 13.7088 13.5215 13.6560 13.9183 13.5563 

LV SNR: 11.8558 11.7687 11.5072 11.3177 10.9373 10.6589 10.7057 10.4050 11.1445 

Left_Lung 
SNR: 

9.3118 6.8869 8.2107 9.9716 10.2592 11.0329 12.2805 13.0740 10.1284 
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Table V3: Dynamic Phantom with Added Noise SNR Magnitude Values 

 Noise Amplitudes of Random Gaussian Noise: 

Echo Times 10-6 10-4 10-2 1 10 100 

1 (ms) 197.2607 189.7259 150.4641 110.6149 90.7589 70.9841 

312 (ms) 202.6161 183.9365 145.9964 106.0010 86.0021 66.0076 

624 (ms) 200.0224 165.1538 124.9665 85.0212 65.0549 45.1483 

937 (ms) 190.8451 173.8043 130.8555 90.8621 70.8733 50.9111 

1247 (ms) 195.4619 186.9928 147.9145 108.5512 89.1252 70.0203 

1560 (ms) 183.1131 162.6682 120.9891 81.1041 61.2377 41.5241 

1872 (ms) 161.1301 149.3118 111.5950 72.9566 54.3835 37.0971 

2183 (ms) 190.7353 190.8219 150.4075 111.2681 92.0047 73.1355 

2496 (ms) 189.4196 170.9740 131.6711 92.7610 73.7474 55.4106 

2807 (ms) 190.1660 146.9496 107.8156 69.6339 51.5471 35.2794 

3119 (ms) 197.1843 173.0081 136.5092 96.5180 76.5328 56.5666 

3432 (ms) 203.2994 183.6614 145.0262 105.0259 85.0268 65.0315 
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Table V4: Dynamic Phantom with Varying Oscillation SNR Magnitude Values 

 Oscillation Amplitude: 

Echo Times 20 40 60 80 100 

1 (ms) 74.9773 66.0065 60.4607 55.5426 51.7070 

312 (ms) 76.1556 65.8260 59.2134 55.1448 51.5079 

624 (ms) 73.3277 59.8176 52.2918 48.1067 45.1668 

937 (ms) 70.8561 61.4141 56.7373 52.7111 48.8627 

1247 (ms) 74.6303 60.3457 52.3356 47.3132 43.0150 

1560 (ms) 59.7054 49.5673 44.5107 40.7365 37.8478 

1872 (ms) 41.5608 37.7591 37.0832 38.0086 42.4625 

2183 (ms) 72.6623 64.3823 59.4552 55.7165 52.2100 

2496 (ms) 88.3597 74.8503 64.2499 59.0639 56.9232 

2807 (ms) 48.9326 39.6825 35.4191 32.7930 30.7437 

3119 (ms) 80.7742 68.0624 61.0993 57.7447 53.5622 

3432 (ms) 108.8401 72.4648 62.8460 57.0014 52.2874 



 

Figures: 

Figure V5: 
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Figuree V6:
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Dynamic Phantom (Noise Added) Images from SNR Calculation: 
Figuree V7 and V8: 
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Figuree V9 and V10: 
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Figuree V11 and V12: 
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Figure V13 and V14: 
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Figure_V15 _and _V16:
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Dynamic Phantom Oscillation Images from SNR Calculation: 
Figure_V29 _and _V30:
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Figure_V31 _and _V32:
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Figure_V33 _and _V34:
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Figure_V35 _and _V36:
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Figure_V37 _and _V38:
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Figure_V39 _and _V40:
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JAA Appendix: 
 

I. Figures: 
Figure 1: Off-Res Images at Positive and Negative Frequencies 

 
                                      A.                                                                                     B. 

 
 
                                      C.                                                                                    D.
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Figure 2: Effect of Changing Number of Petals on the SNR of Off-Res Images 
 

Off-Res Effects: 5 Petals 
 

                                      A.                                                                             B. 

 
Off-Res Effects: 7 Petals 

 
                                      C.                                                                           D. 
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Off-Res Effects: 13 Petals 
  

                                    E.                                                                                 F. 
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II. Tables 
 

Table 1: Quantitative Metrics for Results Section I. 

 
 
 
 
 
 
 
 
 
 
 
 

53 

S.No 
Frequency 

(Hz) 
MSE PSNR R 2-Value RMSE NRMSE MAPE SSIM 

1a. 1 0.032 63.127 0.983 0.178 0.098 11.30 0.491 

1b. -1 0.032 63.131 0.984 0.178 0.098 11.269 0.494 

2a. 16 0.105 57.936 0.947 0.323 0.178 21.923 0.408 

2b. -16 0.105 57.933 0.947 0.323 0.178 21.809 0.415 

3a. 64 0.613 50.257 0.689 0.783 0.429 59.836 0.221 

3b. -64 0.611 50.269 0.69 60.493 0.9 59.701 0.217 

4a. 128 0.83 48.942 0.579 0.911 0.5 44.019 0.163 

4b. -128 0.83 48.943 0.579 0.911 0.498 44.041 0.166 



 
Table 2: Effect of Changing Number of Petals on SNR of Off-Res Image 

 

 
 

III. Supplementary Material 
Quantitative Metrics for Image Quality: 

i. MSE (Mean Squared Error): The MSE is an estimator that measures the 
average of the squared differences between the actual and predicted 
values. The lower the MSE, the better the agreement between predicted 
and actual images. 

 
 – (3)SE ean(P redicted ctual)M = m − A 2  

 
ii. PSNR (Peak Signal to Noise Ratio):  The PSNR measures the maximum 

power of a signal compared to the amount of noise corrupting the image. 
The higher the PSNR, the better the correlation between the predicted and 
actual images. 
 

 – (4)SNR 0 logP = 1 10 MSE
Max P ixel V alue2  

 
iii. R 2-Value: The R-Squared Value measures the proportion of variance for a 

dependent variable explained by an independent variable in a regression 
model. The range of R-squared is from 0 to 1, with 1 implying 100% 
linearity. 
 

 – (5)R2 = 1 − Sum of  T otal Squares
Sum of  Squares of  Residuals  
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S.No. Number of Petals Resonance Condition Peak Frequency 
(Off-Res) 

SNR 

1. 5 
On-Resonance - 175.01 

Off-Resonance 64Hz 179.05 

2. 7 
On-Resonance - 202.54 

Off-Resonance 64Hz 201.08 

3. 13 
On-Resonance - 195.7 

Off-Resonance 64Hz 192.12 



 
 

iv. RMSE (Root Mean Squared Error): The RMSE measures the quadratic 
mean of the differences between predicted and actual values. Similar to 
MSE, low values of RMSE correlate with better agreement of the 
predicted and actual images.  
 

 – (6)MSE  R =  √∑
n

i=1
n

(P redicted−Actual)2

 

 
v. NRMSE (Normalized Root Mean Squared Error): The NRMSE is 

calculated by normalizing the RMSE and guarantees a one-to-one 
comparison between the two images. As expected, a lower NRMSE 
implies better correlation. 
 

 – (7)RMSE  N = RMSE
Max Observed V alue−Min Observed V alue  

 
vi. MAPE (Mean Absolute Percentage Error): The MAPE is a common loss 

function used to solve regression problems calculated as the average of the 
absolute percentage differences between the actual and predicted values. 
Like most error metrics, a smaller error relates to a higher correlation 
between the predicted and actual image. 
 

 – (8)AP EM = n
100 ∑

n

i=1

|
| Actual
Actual−P redicted |

|  

 
vii. SSIM (Structural Similarity Index):  The SSIM measures the degree of 

similarity between two images using more perceptual phenomenon. If two 
images are perceived as similar by the human eye, there is a good chance 
that they will have a high SSIM value. The higher the SSIM, the better 
agreement between the predicted and actual images.  

 

 – (9)SIMS (x, )y =
2μ μ + C (2σ + C )( x y 1) xy 2

μ + μ + C σ + σ + C( x
2 2

y 1)( x
2 2

y 2)
 

, μ ean of  P redicted and Actual Image  μx  y = M  

, σ , ariance of  P redicted, Actual & P redicted and Actual Image  σx  y σxy = V   

, C ovariance of  P redicted and Actual Image  C1  2 = C  
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