Rosette Trajectories

BIM 241 Final Project
Team Members:
Valerie Porter
Janani
Linh
Rosette Trajectories Enable Ungated, Motion-Robust, Simultaneous Cardiac and Liver T_2^* Iron Assessment

Adam M Bush 1, Christopher M Sandino 2, Shreya Ramachandran 3, Frank Ong 1, Nicholas Dwork 4, Evan J Zucker 1, Ali B Syed 1, John M Pauly 2, Marcus T Alley 1, Shreyas S Vasanawala 1

Affiliations + expand

PMID: 32452088 PMCID: PMC7699670 (available on 2021-12-01) DOI: 10.1002/jmri.27196
Introduction

- This paper is about improving quantitative T2* MRI assessment of iron overload.
- Iron overload results from the body accumulating excess amounts of iron in the tissue, which can cause organ failure and death.
- T2* is a clinically useful biomarker for iron quantification because of iron’s paramagnetic properties that cause inhomogeneity and increase the local T2* measurement.
- MRI is a great non-invasive technique for assessing organs, such as the heart, kidneys, spleen, liver, and pancreas.
Challenges with MRI:

- T2* calculations are easily affected by motion artifacts
 - Thus, limiting for pediatric patients or patients with motor control disorders
 - Sedation may be required, adding risk and expense
- T2* calculations of the heart or areas near the lungs are greatly affected
 - Thus, limiting for pediatric patients or patients with motion control disorders
 - Gating and breath holds are required
- Gating MRI Scans take longer to complete
- T2* measurements of the heart and liver are the strongest prognostic markers of mortality
Rosette Trajectories

- There are more robust methods for capturing images with motion than Cartesian, such as radial and spiral k-space sampling methods. These types of methods include rosette trajectories.

- Rosettes are flower-like k-space trajectories that utilize frequent sampling of the center of k-space to reduce noise and produce diffuse aliasing artifacts.

- Thus, this group decided to try Rosette trajectories to improve these T2* iron assessments that are affected by motion.
Materials and Methods

- Performed on a GE Signa 450W MRI system with a 20-channel coil
- Phantom Imaging: Cartesian and Rosette Multi Echo images acquired for 6 phantoms containing ferumoxytol
- Patient Population: 8 healthy volunteers and 18 patients undergoing T2* iron assessment
- Reproducibility experiments: breath-hold scans
- Motion sensitivity: free breathing + failed breath-hold T2* scans
Imaging Parameters

- To reduce eddy current and gradient timing-related artifacts:
 - Max slew rate = 75 mT/m/s
 - Gradient amplitude = 40 mT/m
- Total of 800 repetitions
- Total readout time per shot = 16 ms
- $q=2.2$, Rotation Angle = 137.5°
- Rosette – 5 echoes; Cartesian – 8 echoes

TABLE 1. Imaging Parameters Used in Cartesian and Rosette Multi-echo, Gradient Echo Pulse Sequences

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cartesian</th>
<th>Rosette</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gating</td>
<td>ECG/PPG gated</td>
<td>Ungated</td>
</tr>
<tr>
<td>Matrix size</td>
<td>256 × 256</td>
<td>512 × 512</td>
</tr>
<tr>
<td>FOV (cm)</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Resolution (mm)</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>Slice thickness (mm)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Flip angle (deg)</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>Repetition time (msec)</td>
<td>15.7</td>
<td>18</td>
</tr>
<tr>
<td>Echo times (msec)</td>
<td>1.1, 2.4, 3.7, 5.0, 6.3, 7.6, 8.9, 10.2</td>
<td>0.8, 4.6, 7.6, 10.6, 13.6</td>
</tr>
<tr>
<td>Scan time (second)</td>
<td>15–20</td>
<td>15</td>
</tr>
</tbody>
</table>
Rosette Sequence
Results
Discussion

- Comparable T2* with:
 - HIGH image quality, spatial resolution, reproducibility
 - LOW motion artifacts and reduced spatial variability to clinical procedure
- No cardiac gating => no corruption by respiratory motion as in Cartesian
- Advantages over previous work:
 - No patient motion correction
 - Ungated
 - Same scan times as clinical standard
Limitations

- Limited number of subjects – increase in type 2 statistical errors
- Non-Cartesian sampling is more prone to gradient timing imperfections
- Incorporation of motion directly into the reconstruction model
- Magnitude-based T2* measurements are confounded by intravoxel fat
- Rosette T2* maps are more sensitive to off-resonance artifacts than the typical cartesian maps
Our Experiments and Results

1. Trade off Between Number of Rosette Petals and T2* Quantification (Linh)
2. SNR Comparisons of Rosette Heart Scan and LV Phantom Data (Valerie)
3. Effects of Off-Resonance Sources of Rosette Phantom Images (Janani)
The effects of changing number of petals

Objective:

- To improve motion artifacts, which usually corrupts the T2* estimates
- Evaluate the trade-off when changing the number of petals in rosette trajectories
Definition of number of petals

Class II rosettes are defined:

\[\text{if } N \text{ is odd, } q = \left\{ \frac{N + 2}{N} + \frac{2(k - 1)}{N}, k \in Z^+ \right\} \]

\[\text{if } N \text{ is even, } q = \left\{ \frac{N + 2}{N} + \frac{4(k - 1)}{N}, k \in Z^+ \right\} \]

\(N\) is the number of petals

\(q\) is a shape parameter = \(\omega_2/\omega_1\) (\(\omega_1 \gg \omega_2\)) [Noll, IEEE 1997]
Imaging Parameters

- Max slew rate = 80 mT/m/s
- Gradient amplitude = 40 mT/m
- Total of 80 repetitions
- Total readout time per shot = 16 ms
- Number of petals = 5, 7, 11, 13
Single Trajectory and 80 rotations

(q = 0.6) (5 petals)

80 Rotations
Gradient waveforms and Image reconstruction

Rosette Gradient waveforms for one trajectory

Time (ms)

G_x [mT/m]

G_y [mT/m]

(Spetals)
Performance of motion artifacts on dynamic LV

$q = 0.6$, 5 petals

$q = 0.43$, 7 petals

$q = 0.27$, 11 petals

$q = 0.23$, 13 petals
Calculate motion artifacts metric

Gradient entropy metric is to quantify MR motion corruption in the image space [Cheng et. al, MRM 2012]

Input:
- Image data
- The localization of the motion metric calculation in X, Y

Output:
- Gradient entropy metric
Performance of motion artifacts on phantom images for 80 rotations

Static LV

Dynamic LV

Pixels with improved motion = Dynamic motion < Static motion
Performance of motion artifacts with 800 rotations

<table>
<thead>
<tr>
<th></th>
<th>5 petals</th>
<th>7 petals</th>
<th>11 petals</th>
<th>13 petals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static LV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic LV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pixels with improved motion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overall Results

<table>
<thead>
<tr>
<th></th>
<th>5 petals</th>
<th>7 petals</th>
<th>11 petals</th>
<th>13 petals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient Amplitude (mT/m)</td>
<td>26.28</td>
<td>28.17</td>
<td>29.57</td>
<td>29.86</td>
</tr>
<tr>
<td>Computational Time (s)</td>
<td>1.64</td>
<td>1.68</td>
<td>1.98</td>
<td>2.53</td>
</tr>
<tr>
<td>Average T2*</td>
<td>2707</td>
<td>2166</td>
<td>3907</td>
<td>3987</td>
</tr>
</tbody>
</table>
Discussion

- The motion artifacts are reduced when increasing the number of petals
- The best performed model is with 5 or 11 petals for Rosette trajectories
- Average T2* is improved

Limitations:
- Takes more computational time with higher number of petals
- Other factors (e.g. number of rotations, shape of petals, rotational angles, etc.) might be taken into consideration for the investigation
SNR Comparison of Rosette and Cartesian Data

Objective:

- How do the Rosette trajectories affect the SNR of the image compared to the Cartesian method?
- How are anatomically relevant region signals affected by Rosette compared to Cartesian?
SNR Calculation:

\[SNR = 20 \times \log_{10} \left(\frac{\text{signal}}{\text{noise}} \right) \]

Signal = mean(Entire_Image)

Noise of each ROI = std (ROI_Image)

Noise = mean(Noise_of_each_ROI)
SNR Comparison of Rosette and Cartesian Data

- ROIs are 32x32 pxls
- Cover relatively the same anatomy signal for each type of image
- Limitation: FOVs are NOT the same
- Calculate noise for each ROI and average for SNR calculation

SNR Comparison of Rosette and Cartesian Data

- Rosette Image ROIs
 - 256x256 pxls
 - 5 Echo Images
- Cartesian Image ROIs
 - 256x256 pxls
 - 8 Echo Images
SNR of Cartesian Data

<table>
<thead>
<tr>
<th>TE</th>
<th>SNR</th>
<th>TE</th>
<th>SNR</th>
<th>TE</th>
<th>SNR</th>
<th>TE</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1ms</td>
<td>8.69</td>
<td>2.4ms</td>
<td>7.62</td>
<td>3.7ms</td>
<td>7.78</td>
<td>5.0ms</td>
<td>8.11</td>
</tr>
<tr>
<td>6.3ms</td>
<td>7.38</td>
<td>7.6ms</td>
<td>7.88</td>
<td>8.9ms</td>
<td>7.38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average Cartesian SNR: 7.39

Average Liver ROI SNR: 13.41

Average RV ROI SNR: 13.56

Average LV ROI SNR: 11.14

Average Lung ROI SNR: 10.12
SNR of Rosette Data

TE = 0.8ms
SNR = 13.9

TE = 4.6ms
SNR = 13.86

TE = 7.6ms
SNR = 11.60

TE = 10.6ms
SNR = 10.93

Average Rosette SNR = 12.01
Average Liver ROI SNR = 14.10
Average RV ROI SNR = 18.39

Average LV ROI SNR = 15.02
Average Lung ROI SNR = 4.28
SNR Comparison Discussion

● Average Cartesian SNR = 7.39 Average Rosette SNR = 12.01
● Thus, Rosette trajectories may improve SNR
● First Echoes had the strongest SNRs for both methods
● All SNR ROIs improved (increased) with Rosette, except for Lungs
● Limitations:
 ○ SNR of Cartesian is likely affected by the FOV being larger than the Rosette
 ○ ROI size, although the same size, the anatomy area covered was larger for Cartesian than Rosette
SNR of Phantom Data Reconstruction with Rosette

Objective:

- How do Rosette trajectories affect a dynamic images compared to static ones?
- How does the changing the number of k-space samples affect the SNR of the reconstructed phantom image?
SNR of Phantom Data Reconstruction with Rosette

- Static and Dynamic LV Phantom
 - 12 Echos
 - $\text{lumend} = 180$;
 - $\text{walld} = 250$;

- Captured Image Signal with added complex Noise and without Noise w/ rosette_test.m:

 Random Noise = $10^{-6*\text{randn(k-trajectory value)}}$

 The real and complex parts are added to the k-trajectory values.

Then, calculate the SNR with the mean signal of the image w/o noise
Noise Calculation for Phantom

Signal = mean(Pure_Signal_Image)
Noise = mean(Only_Noise_Image)
Some Other Cool Images of Noise
SNR of Rosette Phantom Data

Static Image

Average SNR = 8.33

Dynamic Image

Average SNR = 46.83
SNR of Rosette Phantom Data with $\frac{1}{2}$ Sampling

Static Image

Average SNR = 8.68

Dynamic Image

Average SNR = 62.20
Some More Cool Images of Noise!
SNR of Rosette Phantom Discussion

- Dynamic SNR > Static SNR, including reducing the number of samples
- Reducing the k-space samples improved SNR slightly for static (0.35 dB), and greatly for dynamic (15.37 dB)
- But, reducing the k-space introduced aliasing when halved
- Thus, Rosette seems to perform better with dynamic scans
- However, SNR may not be the best image quality quantification, since the sampling can mistakenly show image improvement. Other image quality factors should be taken into consideration.
Inclusion of Off-Resonance Sources

Objectives:

- To include contributions of off-resonance sources and examine the reconstructed Rosette phantom after changes in frequency range
- Evaluate the obtained images using image quality metrics
Off-Resonance Effects

Off-Resonance Effects arise due to:

• Main Field (Bo) Inhomogeneities: near-uniformity maintained using static shim coils

• Susceptibility-Induced Field Variations: differences in susceptibility in the body range from 10^{-5} to 10^{-6}

• Chemical Shifts: magnetic field to the nucleus is reduced by a small factor because of electronic shielding
Off-Resonance Effects

The receive signal at baseband:

\[s(t) = \int_{x,y} m(x, y) \, e^{-2\pi i (k_x + k_y)} \, dx \, dy \]

The receive signal at baseband with off-resonance sources:

\[s(t) = \int_{x,y} m(x, y) \, e^{-2\pi i (k_x + k_y)} \, e^{-2\pi i \Delta f t} \, dx \, dy \]
Shifted phase effects on image quality
Image Quality Evaluation

Deep residual network for off-resonance artifact correction with application to pediatric body MRA with 3D cones

David Y Zeng ¹, Jamil Shaikh ², Signy Holmes ², Ryan L Brunsing ², John M Pauly ¹, Dwight G Nishimura ¹, Shreyas S Vasanawala ², Joseph Y Cheng ²
Image Quality Evaluation

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Off-resonance Frequency Range (Hz)</th>
<th>NRMSE</th>
<th>PSNR</th>
<th>SSIM</th>
<th>R Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>-256 to 256</td>
<td>0.19</td>
<td>55.45</td>
<td>0.23</td>
<td>0.73</td>
</tr>
<tr>
<td>2.</td>
<td>-128 to 128</td>
<td>0.17</td>
<td>56.21</td>
<td>0.20</td>
<td>0.78</td>
</tr>
<tr>
<td>3.</td>
<td>-16 to 16</td>
<td>0.12</td>
<td>56.75</td>
<td>0.19</td>
<td>0.80</td>
</tr>
<tr>
<td>4.</td>
<td>-1 to 1</td>
<td>0.089</td>
<td>62.33</td>
<td>0.25</td>
<td>0.95</td>
</tr>
</tbody>
</table>
SSIM Maps

SSIM Map for Peak Freq=16Hz

SSIM Map for Peak Freq=1Hz
Frequency Spectrum

Frequency Spectrum, On Res, 128Hz

Frequency Spectrum, Off Res, 128Hz
Effect of Changed Parameters on SNR

Objective:

- To change the number of petals and add off-resonance sources in different ranges of frequency and calculate the SNR
Changing No. of Petals and adding Off-Resonance Sources

Peak Frequency = 128Hz
SNR Calculations for Off-Res Sources and Different No. of Petals

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Resonance Condition</th>
<th>Number of Petals</th>
<th>Peak Frequency (off-res)</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>On-Resonance</td>
<td>5</td>
<td>-</td>
<td>80.94</td>
</tr>
<tr>
<td></td>
<td>Off-Resonance</td>
<td>5</td>
<td>16Hz</td>
<td>80.30</td>
</tr>
<tr>
<td>2.</td>
<td>On-Resonance</td>
<td>7</td>
<td>-</td>
<td>101.96</td>
</tr>
<tr>
<td></td>
<td>Off-Resonance</td>
<td>7</td>
<td>16Hz</td>
<td>100.69</td>
</tr>
<tr>
<td>3.</td>
<td>On-Resonance</td>
<td>11</td>
<td>-</td>
<td>129.23</td>
</tr>
<tr>
<td></td>
<td>Off-Resonance</td>
<td>11</td>
<td>16Hz</td>
<td>118.31</td>
</tr>
<tr>
<td>4.</td>
<td>On-Resonance</td>
<td>13</td>
<td>-</td>
<td>76.24</td>
</tr>
<tr>
<td></td>
<td>Off-Resonance</td>
<td>13</td>
<td>16Hz</td>
<td>70.63</td>
</tr>
</tbody>
</table>
SNR Calculations for Off-Res Sources and Different No. of Petals

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Resonance Condition</th>
<th>Number of Petals</th>
<th>Peak Frequency (off-res)</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>On-Resonance</td>
<td>5</td>
<td>-</td>
<td>80.94</td>
</tr>
<tr>
<td></td>
<td>Off-Resonance</td>
<td>5</td>
<td>512Hz</td>
<td>97.20</td>
</tr>
<tr>
<td>2.</td>
<td>On-Resonance</td>
<td>7</td>
<td>-</td>
<td>101.96</td>
</tr>
<tr>
<td></td>
<td>Off-Resonance</td>
<td>7</td>
<td>512Hz</td>
<td>127.20</td>
</tr>
<tr>
<td>3.</td>
<td>On-Resonance</td>
<td>11</td>
<td>-</td>
<td>129.23</td>
</tr>
<tr>
<td></td>
<td>Off-Resonance</td>
<td>11</td>
<td>512Hz</td>
<td>134.33</td>
</tr>
<tr>
<td>4.</td>
<td>On-Resonance</td>
<td>13</td>
<td>-</td>
<td>76.24</td>
</tr>
<tr>
<td></td>
<td>Off-Resonance</td>
<td>13</td>
<td>512Hz</td>
<td>86.06</td>
</tr>
</tbody>
</table>
Discussion

- As the peak value of f reduces, the image approaches the on-resonance/original image

- Image Metrics:

 \[F_{\text{max}} \propto NRMSE \]

 \[F_{\text{max}} \propto \frac{1}{PSNR} \propto \frac{1}{R^2} \]

- The SNR increases up to 11 petals and then decreases
Conclusion

- Increasing the number of petals leads to a decrease in motion artifacts, with optimal performance at 5/11 petals – limitation: exclusion of petal shape, num. of rotations etc. in the analysis.

- For patient data, the first echo had the highest SNR and Rosette outperformed Cartesian. For phantom data, the dynamic SNR was larger than static SNR – limitation: differences in FOV.

- A decrease in frequency range => reconstructed image is nearer to on-resonance. With off-resonance sources, the SNR increases up to 11 and decreases – limitation: limited analysis with dynamic phantom only.