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T2 Shuffling Method Overview 

Volumetric (three-dimensional [3D]) Fast spin echo (FSE) sequences are a common method            
for MR imaging due to its flexibility in acquiring multiple image contrasts within a reasonable               
scan time. However, the long echo trains attributed to FSE scans are subject to image blurring                
due to T2 decay. There is an inherent tradeoff between scan efficiency and image blurring due to                 
T2 signal decay. Thus, previous works focus on reducing acquisition time through            
undersampling techniques such as compressed sensing. Additionally, pattern matching methods          
have been implemented to allow voxel-wise pairing of unknown signals to previously simulated             
signal evolutions. The T2 shuffling method proposed by Tamir et al. [1] combines compressed              
sensing techniques using randomized phase encode view ordering in k-space with subspace            
selection that models T2 decay. This novel acquisition and reconstruction method allows for the              
recovery of images at multiple T2 contrasts without significant blurring.  

Theoretically, the observed signal is a product of proton density and a time-dependent signal              
evolution function. For a traditional 3D FSE scan, the time progression is ignored thereby              
reducing image contrast and contributing to blurring from T2 decay during acquisition. With the              
T2 shuffling procedure, the temporal aspect is handled by modeling signal evolutions with the              
Bloch equation and Extended Phase Graph algorithm. There is a low-rank orthonormal temporal             
basis ϕ suitable for matching the distribution of T1 and T2 parameters in tissue of interest. The                 
basis can be described using K = 4 principal components and has been tested to have greater than                  
99% accuracy when representing the signal evolutions for the examined foot and knee images in               
the paper. For a traditional FSE scan, variable flip angles are imperative for reducing T2 signal                
decay and have a significant impact on the signal evolution. The orthonormal basis in the T2                
shuffling model accounts for the temporal evolution, and so a specific variable flip angle train is                
not necessary to accommodate for signal decay. Instead, a particular SNR can be specified to               
design the flip angle train. Additionally, since each signal will be modeled temporally with this               
basis, the full evolution can be determined at any echo time. Thus, it is not necessary to acquire a                   
specific TE to quantify the T1 and T2 parameters in the tissue. Hence, the voxels can in fact be                   
represented by a linear subspace to reduce model error and preserve structure. 

The signal evolutions for an ensemble of spins can be modeled by the product of the basis                 
and the reconstruction coefficients α. The reconstruction problem then becomes dependent on the             
computation of α:  

 

The number of temporal basis coefficients determines the complexity of the optimization            
problem while the low-rank regularization portion of the function provides dimensional           
reduction by constraining local voxels to a smaller subspace. The true values in k-t space are                
represented by y and are determined by point-wise multiplication of coil sensitivity maps across              
the time series of images followed by a Fourier transformation and subsequent masking of              
acquired phase encodes.  



For radial sampling, a common method of acquiring phase encodes is center-out view             
ordering. However, this manner of acquisition is ill-posed for the reconstruction problem due to              
coherent apo from signal decay. The sampling ordering differs from a traditional FSE scan by               
relying on randomized sampling in k-t space instead of a regular center-out ordering. Typically,              
low-frequency k-space values are acquired earlier during the echo train while high-frequency            
samples are acquired at later echo times. Due to the effects of T2 decay, periphery k-space data                 
is largely filtered out resulting in coherent blurring of the image. The normalized point spread               
function which correlates to blurring has a non-negligible width which becomes increasingly            
significant for shorter T2 values. In comparison, the T2 shuffling method randomly selects phase              
encodes across the entire k-space, spreading artifacts incoherently and thereby resulting in a             
distinct, sharp peak in the point spread function. This corresponds to reduced image blurring              
even for species with lower T2 values. The cost of reduced blurring is the randomized               
distribution of incoherence across the reconstruction coefficients.  

         

The T2 shuffling method was tested both on a 2D multi-echo sequence for a sagittal slice of                 
a foot as well as a modified CUBE pulse sequence for a knee. The data was retrospectively                 
undersampled using both center-out and randomly shuffled view ordering. The fully sampled            
data served as the standard for comparison. While the reconstruction from the center-out             
ordering had distinct blurring of important image features, the image acquired from randomized             
ordering remained sharp and retained the same level of quality as the original image. The more                
detailed structures within the image had been retained in the T2 shuffling method, demonstrating              
that denoising of potential incoherent artifacts was possible. Additionally, T2 shuffling allows            
for the recovery of the full time series and can provide different degrees of contrast from the                 
same acquisition as demonstrated from the following in vivo scans of bone marrow edema: 

 



The higher T2 value of the fluid is clearly highlighted in the virtual echo time images. Not                 
only is the image quality preserved with the T2 shuffling method, but microstructures within the               
tissue are well-defined and can be viable for analyzing pathology in the clinical setting.  

While traditional FSE scans must balance between scan time and image quality, T2             
shuffling is able to acquire a series of sharp images without this time-resolution tradeoff. The               
reconstruction from sparse, undersampled data pairs well with the utilization of a low-rank             
temporal basis to model signal evolutions. Through a combination of compressed sensing,            
parametric modeling, and randomized masking techniques, T2 shuffling improves 3D FSE scans            
by simultaneously reducing image blurring while also allowing for the reconstruction of            
multicontrast images necessary for clinical examination.  



Denise’s project: Noise vs. bias tradeoff for sparser sampling patterns 

This project focuses on modifying the sampling masks applied to an in vivo knee dataset 
and analyzing the noise vs. bias tradeoff in image reconstruction based on two key factors: the 
number of temporal coefficients (K) and the low rank regularization hyperparameter (λ). Further 
sparsity of the sampling masks corresponds to a decrease in number of phase encodes acquired at 
each echo time, effectively reducing the acquisition time. Thus, the main interest in this project 
was to determine whether image quality can be preserved with further undersampling of k-space 
data and what modification to the parameters must be made in comparison to the original data.  

The initial reconstruction model implemented by the demo code contained 80 different 
randomly sampled masks corresponding to the sampled points in the k-space. Additionally, the 
reconstruction parameters were originally optimized at K = 4 and λ = 0.04. In order to first 
explore the tradeoff between bias and noise in the original dataset, I varied the values for one 
parameter while keeping the other constant and noted the changes to the reconstructed image. To 
quantify noise and bias, RMSE and SNR were evaluated for each reconstruction simulation. The 
reconstruction time was also noted to examine the optimization time costs. Without considering 
regularization by setting λ equal to zero, the following values were recorded: 

 

As expected, the model error decreased as the number of temporal coefficients increased from 2 
to 6. With increased complexity of the temporal basis, the model is able to better fit the original 
image. However, this may also pose an issue of overfitting as demonstrated by the decrease in 
SNR. Noise from the original image becomes increasingly amplified with a greater number of 
temporal coefficients past K = 4. Meanwhile, fewer temporal coefficients may not be sufficient 
to define the signal evolution and be subject to underfitting. The signal intensity may not be as 
sharp as before and different tissue types may appear more homogenous. Additionally, 
optimization of a higher rank matrix resulted in a notable increase to the reconstruction time. 
While this may not be significant for the reconstruction of a single knee, further attention is 
necessary when handling a larger dataset.  

Then, by setting the number of temporal coefficients constant at K = 4, similar 
measurements were recorded for a range of different λ regularization values. Since the temporal 
basis complexity of the optimization remained constant, reconstruction time was not significant 



when changing the regularization weighting. The effect on image quality is demonstrated below: 

 

Regularization reduces the complexity of the model by applying a constraint to local voxel 
groups. Thus, increasing the value of λ subsequently homogenizes the signal intensity values 
across neighboring voxels. This regularization portion of the reconstruction formula allows for 
better denoising while keeping the complexity of the temporal subspace. Using the original 
masks, the model RMSE increases with larger λ values while SNR increases going from λ = 0 to 
λ = 0.16. However, overregularization results in the loss of quality and important image features 
become increasingly blurred. Thus, a value λ must be selected which balances noise reduction 
with retention of image quality. 

Following the preliminary analysis of K and λ, new masks were generated with increased 
sampling sparsity. Specifically, the new masks only contained half of the original positions in k-t 
space sampled while retaining the same manner of randomized T2 shuffling sampling, 
effectively reducing acquisition time by one half. Using the same parameter values for the 
original masks, K = 4 and λ = 0.04, results in a less defined reconstructed image compared to the 
original. With fewer points sampled in k-space, noise becomes further amplified and leads to an 
overall decrease to SNR. Similar to the original case, regularization was excluded and the effect 
of K was analyzed between the values of 2 to 6.  

  

While the overall image itself was considerably noisier, it is notable that features within the 
image remain differentiable despite having been significantly undersampled. As anticipated, the 



model RMSE is relatively higher since less k-space information is available. The overall SNR is 
reduced but not by a considerable amount. Many image features are still preserved in the 
undersampled case. Despite changing the sparsity of the sampling masks, the best number of 
temporal coefficients to represent the data remains consistent at about K = 4.  

Using the most optimized K parameter value, a range of λ values were examined to 
determine what would result in the best image reconstruction. The results are shown below: 

 

SNR increases significantly with regularization with little change to model RMSE, 
demonstrating how model complexity can be paired with low rank regularization for improved 
image quality. Instead of being most optimal at λ = 0.04, the SNR is highest at about double the 
parameter value at λ = 0.08. While altering the value of K did not improve the image 
reconstruction, changing the value of λ was significant. This observation is most likely due to the 
increased apparent noise in the limited k-space acquisition. The weighting of the low rank 
regularization consequently needs to be increased to accommodate for the noisier dataset.  

Based on the results from the sparser mask experiment, there is an inherent tradeoff 
between noise and bias when selecting for the number of temporal basis coefficients and the 
weighting of the low rank regularization. Increasing the value of K provides improved 
complexity of the signal evolution model but will also amplify noise in higher order models. To 
reduce the noise, the value of λ can be increased which forces similarity of signal evolutions 
between neighboring voxels and reduces model complexity. Overregularization will cause image 
blurring and loss of defined features. With more limited sampling in k-t space, image 
reconstructed is best performed with a larger λ but same K value in order to accommodate for 
amplified noise artifacts. However, due to time constraints, no other sampling masks were tested 
and number of iterations per ADMM optimization may not have been sufficient for generating 
the best reconstructed image with each pair of parameters. Additional different sparsity masks 
and more iterations per optimization should be tested to evaluate this relationship between 
undersampling and noise/bias tradeoffs.  



Henry’s project: Change in image quality with conjugate synthesis 

Based on our knowledge about the T2 Shuffling acquisition method, it randomly selects 
phase encodes across the k-space for every TE over the echo train. This method was then able to 
reduce blurring with its randomized sampling scheme and shorten the overall scan time. 
However, the number of phase encodes selected within a single TE is limited due to signal 
recovery in the longitudinal direction, leading to an inefficient amount of collected samples in 
k-space. As uncollected data in k-space could cause blurring from reconstruction, it is important 
to fill in the missing data. Recall from the partial k-space reconstruction methods, it does seem 
possible to synthesize the missing uncollected data. In this investigation, we will focus on the 
conjugate synthesis method specifically, and look at how it would contribute to image quality 
upon reconstruction. 

Conjugate synthesis, by definition, synthesizes missing data at corresponding data points 
by conjugate symmetry. In general, the method requires phase correction before applying 
conjugate symmetry. However, in the case of data acquisition using the current T2 Shuffling 
approach where data is randomly spread across k-space, symmetric coverage in k-space has not 
been achieved for the purpose of phase correction. Therefore, phase correction will be skipped 
for the scope of this investigation. The potential workaround method to achieve phase correction 
will be discussed later in the report. 

Using the in vivo knee data provided, modifications are made to the k-spaces for each 
sensitivity coil and at each echo time. Within the 260*240 k-space data matrix, column 120 and 
121 are treated as the middle two phase encodes, and kx = 0 is considered not collected. 
Conjugate symmetry is applied about the origin at (kx = 0,  ky = 0). The following figure shows 
an example of how conjugate synthesis is performed in this investigation. To summarize, if data 
is missing at one of the two conjugate symmetric locations, data will be synthesized to fill in the 
missing spot. On the contrary if both conjugate symmetric locations are filled or both locations 
are missing data, no synthesis will be done at these two specific locations.  

 



In T2 Shuffling reconstruction of the modified data, the sampling masks are also 
modified using the same conjugate synthesis algorithm. Reconstruction runs at the most optimal 
K value at K = 4, and at λ = 0.04 with and without conjugate synthesis. The reconstructed images 
under comparison are shown below: 

 

The difference image is obtained by subtracting the second image (+ Conjugate 
Synthesis) from the first image (- Conjugate Synthesis). Overall, Conjugate-Synthesis-Aided 
reconstruction preserves the structure of the imaged knee, but it does seem to have more 
noticeable incoherent artifacts and reduction of contrast relative to the surroundings. Despite the 
increased incoherent artifacts and reduced contrast, the Conjugate-Synthesis-Aided 
reconstruction generates a much brighter contour at the outermost epithelial layer. The boundary 
separating body tissue and the external environment becomes more obvious as a result. To better 
quantify image quality, SNR measurements are collected at different regions of the knee images: 

 

According to the SNR readings, Conjugate-Synthesis-Aided reconstruction in fact has 
lower SNRs compared to reconstruction in the original work. The significant decrease in SNRs 
can also be observed from the image as incoherent artifacts.  



From the results, it seems that the current conjugate synthesis approach retains structural 
information and enhances reconstruction at boundaries but trades off contrast and SNR. Possible 
cause of the artifacts could be skipped phase correction step as mentioned earlier. In order to 
introduce phase correction to this proposed method in future work, the signal acquisition scheme 
will need to be altered in a way that the k-spaces have symmetric coverage. Adequate phase 
correction is expected to remove the unwanted artifacts. 

In addition, by taking a closer look at the original k-space data, one may find duplicated 
data collection at conjugate symmetric locations. In fact, this could negatively affect the 
performance of the conjugate synthesis approach under a fixed scan time and sampling 
frequency. One would otherwise synthesize more data in k-space and reconstruct a sharper image 
by avoiding duplicated collection at conjugate symmetric locations. Potential solution to address 
the duplication issue is to limit the range of randomized sampling to only two adjacent quadrants 
in k-space, so that all collected data will be utilized fully to synthesize data for their 
corresponding conjugate symmetric locations.  

 

 

  



Cheng’s Investigation: T2 shuffling method with simple motion artifacts  

Introduction 

Artifacts from the motion of patients could be inevitable if the scan time of MRI is relatively                 
long. Motion artifact is considered as one of the main challenges of MRI acquisition. Based on                
the compress sensing method with constrained subspace, the T2 shuffling approach is robust to              
artifacts due to the presence of B1 inhomogeneity, which has been quantitatively discussed in              
Fig. 5 of the paper by Dr. Tamir. However, motion artifacts could lead to degradation of the                 
reconstruction since it causes model mismatch that makes the temporal subspace fail to model              
the signal formation. Here I will investigate the T2 shuffling method with several simple motion               
artifacts during the MR scan. The objective of this investigation is to explore how the motion                
artifacts affect the results of MR image reconstruction based on T2 shuffling method. To              
quantify the effects from motion artifacts, structural similarity (SSIM) index and peak            
signal-to-noise (PSNR) are used to calculate and compare the difference between the            
reconstructed images and the reference image without motion artifacts. 

Method 

Simple motion artifacts in real space or image space can lead to linear phase shifts in the k                  
space domain. In other words, the simple motion artifacts can be represented by the phase shifts                
of the k space data. To simplify the question, we consider such linear phase shifts occur at phase                  
encoding direction of the k space at some moment, and such phase shifts are applied to k space                  
data of all sensitivity coils and each echo train. Here we focus on four types of phase shifts as                   
shown in the following Figure 3-1. Figure 3-1 shows phase shift of the k space data when (a) the                   
motion artifacts occur from the beginning to the middle of the MR scan; (b) the motion artifacts                 
occur from the middle to the end of the MR scan; (c) the motion artifacts occur at the middle of                    
the MR scan and disappear before the end of the MR scan; (d) the repeated motions during the                  
MR scan.  

 

Figure 3-1 Four types of phase shifts in k space data 

With consideration of the local image structure, image contrast and luminance, structural            
similarity index is commonly used as image quality metrics to compare the different images to               
the reference image. The reference image is generated by using the origin k-space vivo data               



without any artifacts, and the main reconstruction parameters are set to be λ = 0.04 and K=4.                 
Based on this reference image, the SSIMs of the images with artifacts are calculated to evaluate                
the effects of the artifact on the T2 Shuffling method. In addition, Peak signal-to-noise ratio               
(PSNR) is also taken into consideration for the artifact evaluation. 

Results and Discussion 

First, we start the simulations with different phase shifts applied to the k space vivo data. To                 
simplify the scenario, here we consider the case in Figure 3-1 (a) and the phase shifts are only                  
applied to the first half of the k space data in phase encoding direction. Figure 3-2 shows the                  
simulation results with different phase shifts applied. Table 3-I shows the simulated SSIM and              
PSNR of different phase shifts applied to the first half of the k space data. As shown in Figure                   
3-2, small phase shifts (< 30 degree) cause the blurring at the boundary between different tissues.                
When the phase shift due to the artifact is larger than 90 degree, major features of the image will                   
be lost after reconstruction. The value of SSIM and PSNR also reflects the quality of the                
reconstructed image. 

Table 3-I 

 

 

Figure 3-2 

Then, to compare the difference between the scenarios of Figure 3-1(a) and Figure 3-1(b),              
we apply a fixed phase shift of 90 degree to the first half of the k space data (1st to 130th of the                       
phase encoding line, total number of phase encoding line is 260) and the last half of the k space                   
data (131th to 260th of the phase encoding line). The simulation results are shown in the                
following Figure 3-3. It shows that the reconstruction is more sensitive to the motion artifact               
during the last half phase encoding of the MR scans, which shows a smaller SSIM and PSNR                 
compared to the other case with same phase shifts. 



 

Figure 3-3 

 

Figure 3-4 

In addition, we apply the same phase shifts to different positions of the phase encoding line                
to simulate the motion artifacts of Figure 3-1(c). The results are shown in Figure 3-4. The                
reconstrued images with phase shifts applied to the first and last ¼ portion of the phase encoding                 
time have higher SSIM and PSNR value compared with the other cases with phase shifts applied                
to the middle of MR scan. Hence, the motions at the beginning and last ¼ portion of the phase                   
encoding time cause less blurring effect in the image reconstruction, while the motions at the               
middle of the phase encoding time lead to large model mismatch and cause significant              
degradation of the reconstruction. 

To consider the scenario in Figure 3-1(d) where motions are repeated by twice during the               
MR scan, the phase shifts are applied to the two locations of the phase encoding line in k space.                   
Figure 3-5 shows the simulation results with 90 degree phase shift applied from 26th to 78th and                 
130th to 156th line at the phase encoding direction. To make a comparison, we consider the case                 
where the 90 degree phase shift is applied to the last half of the phase encoding line, since these                   
two cases have the same motion time and include the critical information of the image               
reconstructure. The simulation shows that the SSIM value of the repeated motion case is smaller               
than the one motion case, but the PSNR value of the repeated motion case is a little bit higher                   



than one motion case. This suggests that the reconstruction with the repeated motion could lose               
more image feature and cause more blurring at the edge of different tissue, but introduce the                
same level noise compared with the one motion case. Due to the time constraint, the effect of                 
artifacts due to other specific patterned or repeated motions are not discussed here but could be                
explored in the future work.  

 

Figure 3-5 

The above investigations of the motion artifacts are based on the demo codes of T2               
shuffling method from Dr. Tamir. The reconstruction with motion artifacts could be improved if              
we can generate different bas data and masks that reduce the model mismatch due to the motion                 
artifacts. In reality, motion artifacts could be more complicated and challenging for analysis,             
which can not be modeled as linear phase shifts. Hence, to reconstruct the image with               
complicated motion artifacts, extra information such as motion tracking would be needed. 

To conclude, this investigation presents the results from T2 shuffling reconstruction with            
simple motion artifacts. The motion artifacts occurring from the middle to last portion of the               
phase encoding time could lead to large model mismatch between the temporal subspace and              
signal formation and thus significantly degrade the reconstruction.  
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