
BIM 241 Final Report

Nonrigid Motion Correction in 3D Using Autofocusing with Localized Linear Translations

Ciara Jekel, Sujoy Ghosh, Yufei D Zhu

Introduction

 Because of their long duration, MR scans are sensitive to motion. Historically, numerous methods

have been proposed to correct for this including models with elements such as translation, rotation, shear,

and scaling. However, these techniques are often computationally intensive and difficult to implement.

This paper uses an autofocusing algorithm that locally minimizes a given motion metric and is predicated

on the assumption that, on a sufficiently small spatial scale, the different types of motion can be well

approximated as simple linear translations. Possible motion paths are limited to motion measure from

multichannel navigator data to reduce the search space. This novel navigation strategy is based on the so-

called “Butterfly” navigators, which is a modification of the spin-warp sequence in which the prewinder

gradients for phase encodes are slightly modified to traverse the same trajectory at the beginning of each

data acquisition. This makes it possible to obtain translational motion estimates with high temporal

resolution. With a 32-channel abdominal coil, sufficient number of motion measurements were found to

approximate possible linear motion paths for every voxel. This motion correction scheme was performed

on two pediatric patients and results showed an overall reduction in artifacts from complex, nonrigid

motion.

Methods

 Motion is first measured using the Butterfly sequence during the data acquisition. This effectively

confines the search space and limits the computational load the program has to estimate motion with. In

our study, a spin-war sequence with multiple repetition time is used. The Butterfly sequence effectively

modifies the prewinder portion of the timing diagram and collects motion data during a very short period

of time. It is named as such because of the resulting trajectory shape resembling a butterfly wing. After

the data is collected in k-space, a series of post processing steps must occur before the information can be

adjusted in the image domain.

 The first of these steps is the motion correction. As a simplification, nonrigid motion is

approximated as local linear translations rather than rotation, contraction/expansion, and other

complicated transformations. Linear phase correction to all the acquired k-space data is performed with

motion measurements from each coil. After correcting for different motion measurements, the next step is

to determine which correction yielded the best result for a particular location. For this, gradient entropy is

used as a good metric for motion artifacts. This criterion is minimized when the image consists of uniform

brightness separated by sharp edges and has been found to be a good model for normal MR scans.

 To obtain local translational data, the gradient entropy evaluation is performed on windowed

sections of the scan. The scan is multiplied by a 3D Hanning window before performing the gradient

entropy calculations. The size of this window affects the autofocusing selection. Windows sized too small

for local anatomy can amplify motion artifacts, while larger windows allow more blurring from motion.

Artifacts from fat at the edge of the body were present in the 2cm window and noise outside the body is

large. At a 14cm window, the upper liver has an artifact, and the arteries are overly blurred. A window

size of 10cm was selected for a sufficient balance between image sharpness and artifacts. A comparison

of the effects can be seen in Figure 1.

Figure 1: Effect of different window sizes on motion corrected scans. Artifacts from fat can be seen clearly in the 2cm window, as

well as the elevated noise outside the body. In the 14cm window, a ghosting artifact appears in the upper section of the liver. The

10cm window was selected for good balance between sharpness of the arteries and a lack of significant artifacts.

The validity of the motion estimates was assessed with multiple phantom scans. On a stationary phantom,

the motion estimates were confirmed to be stable. A drift of less than 250 µm was observed over 170s. A

phantom moving in a periodically repeating linear pattern was used to verify the accuracy of the motion

estimates against rigid motion. The algorithm accurately measured and successfully corrected for the

motion of the phantom.

Studies conducted

The autocorrection algorithms explained in the previous sections were tested on an abdominal

study performed on a 6-year-old patient using a three-dimensional spoiled gradient-recalled echo

acquisition sequence. As shown in Fig. 2, translational maps of the signals recorded from the sample

show translation along x, y and z axis. The maps indicated variation of signals from the coils for

respiratory motion with some coils recording stationary signals originaying from the lower abdominal

area which are usually stationary during respiratory motion. It is intuitive to think that motion in any one

part of the body shall influence signal only on the coil in the immediate vicinity of the part. One of the

major observations of the experiment was the fact that when motion occurs, the signal change is not only

measured by the local coil but also registered in reduced magnitudes for adjacent coils as well. This has

major implications in the field of MR signal processing as useful data for the sample can also be extracted

from adjacent coils. Similar observations can be made in the last row of Fig. 3 where the number of coils

activated during any type of motion result in signal reception for multiple coils. Also, it was found that

correction using the nearest coil doesn’t yield the best results which indicate that motion artifact

correction is a multicoil phenomenon. The results were also free from ghosting artifacts produced due to

the movement of tissue/ fluid during the scan. There was some amount of blurring involved from

corrupted higher k space frequencies which were later corrected using homodyne reconstruction. Fig. 4

showed a similar trend with reduced artifacts and motion correction. In some areas with low signal to

noise ratio, small amount of motion was detected by the algorithm. Whereas some artifacts were

uncorrect as the algorithm was unable to detect the motion paths for these artifacts. Increasing the search

space can help solve this issue. Therefore the study concluded that the best dataset to implement the

autocorrection on butterfly trajectory is one where there are appropriate number of coils relative to the

size of the subject which ensures an appropriate signal to noise ratio.

Fig. 2, 3 and 4 (clockwise)

David’s Analysis

Introduction

 For my individual exploration, I was interested in adjusting the navigator trajectory and analyzing

the comparative time penalty. To do this, it was important to identify which part of the code was able to

modify the trajectory data as well as which part contained information regarding time. For my update

summary, I initially did a cursory read of all the script files searching for the term ‘time’ and identified a

few candidate scripts. However, the code was written with such a complexity that I didn’t feel

comfortable modifying its content without major errors arising. Therefore, after some guidance, I decided

to stick with changing the example1.mat data, the contents of which are shown in the figure below.

 My question associated with the above .mat file was: what is the time consequence for each coil if

I reduced the number of k trajectories by 1/6? 1/3? Or 1/2? My hypothesis was that the measurement time

along with the autofocusing time would decrease because there would be less data for the algorithm to

process. However, as we will see in the results section. This was not the case for the autofocusing data.

Methods

 Specifically, I targeted the NAVA and k matrices within the example1.mat file as these seem to

be most relevant to my goal. Using the size function in MATLAB, I determined that the NAVA matrix

has dimension of 18x425984 while the k matrix has a dimension of 1x18. The 425984 dimension of

NAVA corresponds to the number of phase encodes (ny) times the number of slice encodes (nz) times the

number of coils (nc) as defined for the DATAA matrix. From this, I concluded that the NAVA matrix

contains all the motion information captured along a three-dimensional (3D) k space trajectory, as

specified by the k matrix. To put it visually, the NAVA matrix contains all the information collected

along the blue lines in the following figure (Lustig et al, 2007).

 For my code modification, I deleted 1/6, 1/3, and 1/2 of the rows in both NAVA and k. The code

for deleting 1/6 of rows is shown below. These fractions were chosen based on their multiplication of the

number 18, which is the common dimension for both NAVA and k. I also tried to perform column

deletion in a similar manner. However, the algorithms downstream did not like this modification.

Results

Imaging Time Consequences

 First, I will analyze the theoretical time penalty of deleting the alternating proportions of the

butterfly sequence. The following figure shows the timing diagram of the original prewinder sequence (a)

and the modified prewinder sequence with the Butterfly modification in yellow (b).

Butterfly: A Self Navigating Cartesian Trajectory

M. Lustig1, C. H. Cunningham2, E. Daniyalzade1, and J. M. Pauly1
1Electrical Engineering, Stanford University, Stanford, CA, United States, 2Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada

Introduction: Patient motion during scanning often causes

image artifacts. Most motion artifact reduction techniques

require additional scan time or complexity [1]. Others are

able only detect the motion but not estimate it [1-2].
Inspired by the approaches of [1-3], a new self-navigating

technique for Cartesian acquisitions is proposed. The

method can detect and measure translational motion during the scan. The method

has a negligible scan time-penalty, and the motion estimation and correction is fast

and simple. It can be used as a replacement for current product pulse sequences,

providing motion information and correction when needed.

Theory: Image translation due to motion causes a linear phase in k-space. The

linear phase can be estimated by repeatedly acquiring the same k-space data ñ i.e,

navigator echoes. By applying a simple modification to the spin-warp pulse

sequence, the pre-winders and optionally the re-winders gradient waveforms can be

used as navigators with negligible time-penalty. The phase-encodes gradient

waveforms are modified to retrace a diagonal radial trajectory in k-space, which is

used for navigation, as illustrated in Fig. 1. It is important that the slice refocusing

and prewinders not overlap. The name Butterfly comes from the shape of the

trajectory. A 3D variant of Butterfly is illustrated at the bottom of Fig. 1. For 3D,
the slice encode gradient is modified as well.

Methods: Positive phase-encodes measure 1D translation in the top-left diagonal

direction, negative phase encodes measure bottom-left diagonal one. To get a full

2D translation every TR, a centric k-space ordering is used and the motion

measurements are interpolated (for 3D, the 4 quadrants of k-space are interleaved).

Finally the phase of each readout is corrected.

To test our method, we scanned a knee of a volunteer using an SPGR sequence and
the Butterfly trajectory (2DFT, TR=30ms, ReadOut=10ms, Nav-time=0.24ms,

Flip=45, Res=300mm, Slice=2mm, NEX=4). The experiment was performed on a
1.5T GE Signa Excite scanner using a 3-inch surface coil attached to the knee. The

volunteer was instructed to shake his knee during the scan. In plane motion was

estimated and the data was corrected accordingly. The result was compared to a

non-corrected reconstruction, and a scan without intentional motion.

Results: Figure 3 illustrates the results of the experiment. The rapid motion was

estimated with sub-pixel accuracy over a large range of shifts. The corrected image
exhibits similar high-resolution quality as the image acquired with no motion.

Discussion and Conclusions: By a simple modification free navigation

information in Cartesian imaging is obtained every TR. This information can be

used to correct for translation motion or as acception/rejection of data.
References: [1] Pipe JG Magn Reson Med. 1999 Nov;42(5):963-9 [2] Brau et. el, Magn Reson Med.

2006 ;55(2):263-70 [3] Crowe et. al, Magn Reson Med. 2004 ;52(4):782-8.

 Figure 2: (a) No-motion. (b) Uncorrected motion. (c) Corrected motion. (d) Motion estimate

(a)

(c)

(d)

Figure 1: Top: The 2D

Butterfly pulse sequence

diagram and trajectory.

Middle: the motion

estimation procedure.

Bottom: the 3D Butterfly

trajectory

(b)

3D Butterfly

Proc. Intl. Soc. Mag. Reson. Med. 15 (2007) 865
x y

z

 The figure above is used to derive the time difference, tp, between the modified (b) and original

(a) prewinder sequence. The overall imaging time consequence of deleting n rows of k and NAVA would

just be n*tp.

 To derive tp, we are first going to set up the equations based on the areas of the figure above. This

gives us the following:

 Next, we are going to set up the total time, ttotal, variable for (b) and combine that with equation

A1b. Notice that there is an extra tn term. The reason for this is that the navigator data are acquired along

one gradient axis. This gives us:

 Finally, after modifying A2b, we get tp (ttotal-ta) to be the following:

Post-Processing Time Consequences

 To analyze the consequence of deleting alternating numbers of k and NAVA on post-processing

time, I plotted the time outputs of the demo.m script. The values for time of motion estimate for coils 1-

32 are plotted in the following two figures.

 The time consequences for autofocusing, or the gradient entropy calculation, are shown in the

following plots:

5 10 15 20 25 30

Coil Number

0.6

0.7

0.8

0.9

1

1.1

1.2

T
im

e
 (

s
e
c
)

Motion Estimate Time for Coils 1-32

Original

Delete 1/6

Delete 1/3

Delete 1/2

Original Delete 1/6 Delete 1/3 Delete 1/2

0.7

0.8

0.9

1

1.1

1.2

T
im

e
 (

s
e
c
)

Motion Estimate Time Distribution

 Additionally, the uncorrected and corrected image of a single slice of the image space is also

shown in the following figure:

Discussion

 Perhaps the most interesting finding in the results section is the gradually increasing trend in the

autofocusing time as more and more data rows are deleted. I surmise that the reason for this is that since

the gradient entropy step takes in information from redundant translational motion estimates, deleting data

will result in a harder time for the entropy algorithm to localize the translation data in image space.

Without additional analysis and testing of the code, however, it seems we may not know the exact reason

behind this increase in time. On the other hand, the median time for each coil’s measurement of

translation shows a decreasing trend. This is expected because as data is deleted, the algorithm has less to

process.

 Temporal resolution refers to the frequency in which the data can be sampled. In this case, the

data refers to the 3D k space matrices. During our presentation, Dr. Cheng asked whether when deleting

our k space data if we would have enough information to estimate linear translation. This is a good point

because even though it may be quicker for the MRI scanner to acquire the data, the overall TR time and

scan time may not be decreased because these scans are respiratory gated, meaning that alternating TRs

start with each respiratory cycle rather than being one continuous scan. Therefore, we can make the

argument that deleting these k space rows and trajectory may not have an impact on the overall scan time

itself. Rather, it is the post-processing times that are most impacted.

Reference

1. Lustig et al. Butterfly: A Self Navigating Cartesian Trajectory. Proc. Intl. Soc. Mag. Reson. Med.

15 (2007)

5 10 15 20 25 30

Coil Number

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

T
im

e
 (

s
e
c
)

Autofocusing Time for Coils 1-32

Original

Delete 1/6

Delete 1/3

Delete 1/2

Original Delete 1/6 Delete 1/3 Delete 1/2
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

T
im

e
 (

s
e
c
)

Autofocusing Time Distribution

 Ciara’s Analysis

Figure A: Top left v=1, top right v=1000, bottom left v = 1e8, bottom right v=1e17. Each motion estimate from a different coil is

shown in a different color. Differences in the motion estimate are negligible, though each scaling factor has different behaviors.

Effect of Field Inhomogeneities on Motion Estimate
To explore the effect of field inhomogeneities on computed motion estimates, I simulated growing

inhomogeneity over time due to field drift, a constant localized inhomogeneity such as the effect of a

metallic implant in a patient, and an increasing localized field inhomogeneity. Since the motion estimate

is sensitive to changes in the navigator data, these field inhomogeneities may affect the accuracy of the

method, and this exploration will help determine the robustness of the motion estimate algorithm in scans

with inhomogeneities.

Field Drift

Typical Bo fields experience drift on the order of 0.1ppm per hour. In the short time period of a single

scan acquisition, this drift can be approximated to be zero. However, accumulated field drift over the

course of a full scan, especially when total acquisition time is increased by using gated scans and the

modified butterfly trajectory, may not be negligible in the motion estimate algorithm. This is similar to

the effect of patient motion, where in each acquisition the patient is assumed stationary, but movement is

possible between a series of acquisitions.

To simulate linear field drift, I use the following equations to modify previously collected data:

Where n is the acquisition number, Kn is the raw k-space data from the original code, v is a scaling factor

to adjust the rate of field drift, and K’n is the field drift adjusted k-space data. This method assumes that in

a single acquisition, the field drift is constant, and that between each TR frame there is a linear increase in

field strength from the previous acquisition. To encompass a wide range of field drift speeds, values for v

were chosen as 1, 1000, 1e8, and 1e17.

𝑊𝑛 = 𝑒2𝜋𝑖𝑛𝑣5e−7 , 𝐾′𝑛 = 𝑊𝑛𝐾𝑛

Though each scaling factor behaves differently qualitatively, as seen in Figure A, the motion estimate is

largely unaffected by linear field drift. The average difference of the magnitude of the motion estimates

for each direction is summarized in Table A below. These amounts are all negligible, and the motion

estimate is approximately unchanged.

v X [mm] Y [mm] Z [mm]

1 1.3366e-14 8.5005e-15 1.6051e-15

1000 1.2559e-14 1.0827e-14 1.6865e-15

1e8 1.4309e-14 1.0069e-14 1.6275e-15

1e17 1.3936e-14 1.0210e-14 1.4504e-15
Table A: The average difference in magnitude between the original motion estimate and modified motion estimate across all

acquisitions in the X, Y, and Z directions for each scaling factor, v.

Localized Field Inhomogeneity

Patients undergoing scans with metallic implants such as IUDs, hip implants, etc. will have artifacts in

final scans due to local field inhomogeneities caused by the object. Should this field effect lie in the path

of the butterfly navigators, there may be effects on the motion estimate.

To simulate this effect, I use the following equation to modify previously collected data.

Where m is the index of a single element of the navigator data, Kn is the raw k-space data from the

original code, v is a scaling factor to adjust the strength of field inhomogeneity, and K’n is the

inhomogeneous field adjusted k-space data. Only one element of the k-space data is modified. This

equation assumes that the effect of field drift is negligible. To encompass a wide range of field

inhomogeneities, values for v were chosen as 1, 1000, 1e8, and 1e17.

The motion estimates behave similarly to the case with linear field drift. Effects of the localized

inhomogeneity are negligible. Values for the average difference in the original and modified motion

estimate are listed in Table B below.

v X [mm] Y [mm] Z [mm]

1 1.5029e-14 9.6746e-15 1.7342e-15

1000 1.5349e-14 1.1488e-14 1.5759e-15

1e8 1.4867e-14 1.1571e-14 1.6629e-15

1e17 1.5374e-14 1.0978e-14 1.6815e-15
Table B: The average difference in magnitude between the original motion estimate and modified motion estimate across all

acquisitions in the X, Y, and Z directions for each scaling factor, v.

Increasing Localized Field Inhomogeneity

To simulate a growing localized field inhomogeneity, I use the following equation to modify previously

collected data.

Where m is the index of a single element of the navigator data, n is the acquisition number, Kn is the raw

k-space data from the original code, v is a scaling factor to adjust the strength of field inhomogeneity, and

K’n is the inhomogeneous field adjusted k-space data. Again, only one element of the k-space data is

modified for each acquisition. This equation assumes that the local field inhomogeneity is growing

linearly between each acquisition. To encompass a wide range of field inhomogeneity growth rates values

for v were chosen as 1, 1000, 1e8, and 1e17.

𝑊𝑚 = 𝑒2𝜋𝑖𝑣5e−7 , 𝐾′𝑛 = 𝑊𝑚𝐾𝑛

𝑊𝑚 = 𝑒2𝜋𝑖𝑛𝑣5e−7 , 𝐾′𝑛 = 𝑊𝑚𝐾𝑛

1

1e3

1e8

1e17

Figure C: Left: Total motion estimates, Right: Difference in motion estimates. The scaling factor is labeled at the left of each

pair, and motion estimate for each coil is shown in a different color.

Table C: The average difference in magnitude between the original motion estimate and modified motion estimate across all

acquisitions in the X, Y, and Z directions for each scaling factor, v.

As seen in Table C, there is a significant effect on the motion estimates for scaling factors of 1000 and

1e17, but the effects for scaling factors 1 and 1e8 are negligible. This can be seen in Figure C where the

shape of the motion estimates for v=1 and v=1e8 are nearly identical to the original, but the motion

estimates for v=1000 and v=1e17 are affected. For v=1000, there is a sinusoidal effect super-positioned

over the original motion estimates. For v=1e17, the difference is in high frequency noise in the motion

estimates of the late scans. The differences in magnitude across different scaling factors, and the periodic

behavior of the two highest magnitude scaling factors suggest effects of resonance may influence the

behavior of the motion estimate in cases where a localized field inhomogeneity increases over time.

Field Inhomogeneities Discussion

The method of calculating motion in the scan is robust against linear field drift and localized field

inhomogeneities, but susceptible to influence when an increasing localized field inhomogeneity is in the

path of the butterfly navigators as simulated above. However, these simulations are limited and simple.

Other field drift patterns may cause more significant effects, such as a periodically repeating drift pattern.

Additionally, localized field inhomogeneities are much more complex and would affect a larger region of

the navigator. Though this would not affect the resultant negligible motion estimate differences in the

temporally static case, it may affect the magnitude, resonance, or shape of the effects in the increasing

case.

References

Tal, A., & Gonen, O. (2013). Localization errors in MR spectroscopic imaging due to the drift of the main

magnetic field and their correction. Magnetic resonance in medicine, 70(4), 895–904.

https://doi.org/10.1002/mrm.24536

V X [mm] Y [mm] Z [mm]

1 9.5693e-04 5.9160e-04 5.3510e-05

1000 0.5921 0.4929 0.0583

1e8 1.3958e-10 8.9889e-11 1.3694e-11

1e17 0.1743 0.1939 0.0273

Sujoy’s Analysis

 Investigation on the use of Projection Onto Convex Sets (POCS) for image reconstruction

The paper has implemented the use of homodyne reconstruction to reconstruct the image from partial k

space. It allows the reduction of computation time for fully symmetric data. MRI images have a real

(symmetric) and imaginary (antisymmetric) component. The key idea in the homodyne algorithm is to

preweight the k-space data so that when we take the real part of the image data, it corresponds to a uniform

weighting in k-space. The symmetric component can be reconstructed using conjugate symmetry property:

𝑓(−𝑥) = 𝑓 ∗ (𝑥) (1)

The weighting function can be also divided into ramp and step functions that become relevant for reducing

ghosting artifact produced by materials like layers of fat. In this paper, ramp type conjugate symmetry

preweighting function has been used. The results of homodyne algorithm have been shown in Fig. 1. The

resultant image clearly showed organ boundaries for the 26th z layer indicating the effectiveness of the

technique. The darker regions on the difference image indicate a higher negative phase difference between

the original and homodyne image. These regions indicate the amount of phase correction that has been

implemented on the image as the symmetric components cancel out. One of the major issues faced by

homodyne reconstruction is problems associated with the interaction between phase correction and

conjugate synthesis. This can be resolved by iterative techniques like POCS which basically constrain the

low-resolution image space data and in the k space the data is matched to the estimate whenever it is

available. The final estimate after multiple iterations satisfies both the criterion and leads to much sharper

and more detailed image. In the spatial frequency domain, the phase encodes that were acquired are replace

the present phase estimate and inverse Fourier transform of the new image is then adjusted to match that of

the symmetric component. The image converges in very few iterations after which the noise floor is reached.

In the present example 5/8th of k space was used for the symmetric data and different iterations of 5, 10, 15

and 100 were tested on the autocorrected data set. As shown in Fig. 2, the blurring visible in the original

image is observed to decrease with every iteration. The maximum possible sharpness in edges was observed

for 15 iterations, beyond which no noticeable change in image quality was recognized. This indicates that

the noise floor for POCS technique is reached by 15 iterations. The computational time achieved was nearly

15 seconds. On a similar note, homodyne implementation was achieved in 6 seconds. A test performed at

100 iterations did not indicate any major change in image properties and hence the limit for phase correction

was reached. The results indicate that phase correction in POCS techniques is quite comparable to that

observed in Homodyne.

Original image After homodyne reconstruction

Difference image showing
phase

Figure 1: Image reconstruction by homodyne technique and corresponding phase change.

Original image 5 iterations 10 iterations 15 iterations

Phase 5 iterations Phase 10 iterations Phase 15 iterations Phase change b/w
Homodyne and POCS

Figure 2: Image reconstruction by POCS technique and corresponding phase change.

Comparing the phase change between homodyne and POCS in Fig. 2 shows the white regions where

homodyne has performed more phase correction than POCS and the black regions are areas where POCS

correction dominates. This variation in phase correction can be explained by the feature of homodyne

algorithm to utilize high frequency components in preweighting function, which are more abundant in the

center of the k space. The symmetric data obtained for partial image reconstruction lies at this center, which

makes the features of the final image sharper than POCS technique. Also, the motion artifacts in the image

possibly contribute to wrongful estimation of vessel boundaries with actual motion parameters. Apart from

minor phase inconsistencies, both the techniques provide similar phase correction and hence, can be used

interchangeably. It can be concluded from the experiments performed in the data set that Homodyne

technique used in this paper has been more effective in reducing ghosting artifacts and obtaining greater

image sharpness than POCS technique. The computational time advantage is also another consideration

that is relevant for cases involving autocorrection for images where dynamic motion is observed. The POCS

technique can further be improved in the future by increasing the number of coils and consequent increase

of pixels generates that can provide a large sample space for greater signal to noise ratio.

References

[1] Partial k space reconstruction, J. Pauly, Stanford University notes, 2005.

[2] Cheng, J. Y.; Alley, M. T.; Cunningham, C. H.; Vasanawala, S. S.; Pauly, J. M.; Lustig, M. Nonrigid

Motion Correction in 3D Using Autofocusing With localized Linear Translations. Magn Reson. Med. 2012.

Homodyne dominates

Supplementary Document

Homodyne implementation

%% runMotionAutofocus.m script
%% This is an example of perfoming autofocusing motion
%% correction using the localized gradient entropy criterion.
%%
%% Run this script after executing runBflyMotionEstimate.m.
%% This example uses motionAutofocus.m which is a completely
%% matlab-based implementation of the algorithm. A compilable
%% mex version (with omp/acml/cuda) is available that runs
%% significantly faster.
%%
%% (c) Joseph Y Cheng (jycheng@mrsrl.stanford.edu) 2012

%% SVN info:
%% Date: $Date: 2012-02-17 17:04:40 -0800 (Fri, 17 Feb 2012) $
%% Revision: $Revision: 1084 $
%% Author: $Author: jycheng $
%% Id: $Id: runMotionAutofocus.m 1084 2012-02-18 01:04:40Z jycheng $

%% example1.mat was acquired with partial k-space in the readout
%% direction. Fortunately, the homodyne reconstruction can be
%% performed post-autofocusing because the autofocusing algorithm
%% depends heavily on the high-frequency contents.

DEBUG_MOTION = 220;
KERNRMM = 40;

KERNR = round(KERNRMM./res);

% Zero-fill partial k-space
%DATAAh = [zeros(nFRead-nx,ny,nz,nc); DATAA];

% Perform autofocusing!
dbdisp('starting autofocusing...');
[IMC,MOUT] = motionAutofocus3(DATAAc,DDX,DDY,DDZ,...
 yorder,zorder,KERNR,...
 DEBUG_MOTION);

% Perform homodyne recon
dbdisp('starting homodyne recon...');
tic;
IMH = DATAAc;
IMCH = IMC;
for C=1:size(IMC,4)
 tempc = fftnc(IMC(:,:,:,C));
 IMCH(:,:,:,C) = homodyne3D(tempc(end-nx+1:end,:,:),nFRead,1);
 tempo = (IMH(:,:,:,C));
 IMH(:,:,:,C) = homodyne3D(tempo(end-nx+1:end,:,:),nFRead,1);
end
clear tempc tempo;

toc

%figure(DEBUG_MOTION+10),imshow3s(flipdim([sumofsq(IMH) sumofsq(IMCH)],1));
figure(m),imshow3s(sumofsq(fftnc(DATAAc)));
figure(m+1),imshow3s(flipdim([sumofsq(IMCH)],1));
figure(m+2),imshow3s(flipdim([sumofsq(IMCH)],1)-sumofsq(fftnc(DATAAc)));
colorbar;

POCS implementation

%% example1.mat was acquired with partial k-space in the readout
%% direction. Fortunately, the homodyne reconstruction can be
%% performed post-autofocusing because the autofocusing algorithm
%% depends heavily on the high-frequency contents.

DEBUG_MOTION = 220;
KERNRMM = 40;

KERNR = round(KERNRMM./res);

% Zero-fill partial k-space
%DATAAh = [zeros(nFRead-nx,ny,nz,nc); DATAA];

% % Perform autofocusing!
dbdisp('starting autofocusing...');
[IMC,MOUT] = motionAutofocus3(DATAAc,DDX,DDY,DDZ,...
 yorder,zorder,KERNR,...
 DEBUG_MOTION);

%Perform POCS recon
dbdisp('starting POCS recon...');
tic;
IMH = DATAAc; %DATAAC is K space
IMCH = IMC;
%st=size(IMC,4);
for C=1:size(IMC,4)
 tempc = fftnc(IMC(:,:,:,C));
 m=0;

% IMCH(:,:,:,C) = pocs3d(tempc(end-nx+1:end,:,:),nFRead,1);
 tempo = (IMH(:,:,:,C));
% IMH(:,:,:,C) = pocs3d(tempo(end-nx+1:end,:,:),nFRead,1);

 % for sli=1:size(tempc,3)

 hnover=0.625*nx;

 data_pk=tempc(:,:,:);
 %noise limit
 threshold_pocs=1;
 %zero padding first guess
 im_init=fftshift(ifftn(fftshift(data_pk)));

 %using phase term on magnitude

 data_pk(1+nx-hnover:end,:,:)=0;
 %center the symmetric data
 data_center=data_pk;
 data_center(1:hnover,:,:)=0;
 im_ph=fftshift(ifftn(fftshift(data_center)));

 im_init=abs(im_init).*exp(1i*angle(im_ph));
 tmp_k=fftshift(fftn(fftshift(im_init)));
 diff_im=threshold_pocs+1;
 %iterate till er ror difference greater than thresh old
 while(m<15)
 m=m+1;
% while (abs(diff_im)>threshold_pocs)
 tmp_k(1:nx-hnover,:,:)=data_pk(1:nx-hnover,:,:);
 tmp_im=fftshift(ifftn(fftshift(tmp_k)));
 %applying phase term to magnitude
 tmp_im=abs(tmp_im).*exp(1i*angle(im_ph));
 tmp_k=fftshift(fftn(fftshift(tmp_im)));
 %comparing the i m a ges
 %diff_im=abs(tmp_im-im_init);
 %e=immse(tmp_im,im_init);
 %diff_im=sum(diff_im(:).^2);
 %fprintf('Differen %f\n',diff_im);
 %fprintf('\n The mean-squared error is %0.10f\n', e);
 fprintf('\n The coil %0.10f\n', C);
 fprintf('\n The z %0.10f\n', m);
 %fprintf('\n The si %0.10f\n', st);
 im_init=tmp_im;
 IMCH(:,:,:,C) =im_init ;
 end

 %end

 % for sli=1:size(tempo,3)

% hnover=0.625*nx;
%
% data_pk=tempo(:,:,:);
% %noise limit
% threshold_pocs=1;
% %zero padding first guess
% im_init=fftshift(ifftn(fftshift(data_pk)));
% %using phase term on magnitude
%
% data_pk(1+nx-hnover:end,:,:)=0;
% %center the symmetric data
% data_center=data_pk;
% data_center(1:hnover,:,:)=0;
% im_ph=fftshift(ifftn(fftshift(data_center)));
%
% im_init=abs(im_init).*exp(1i*angle(im_ph));
% tmp_k=fftshift(fftn(fftshift(im_init)));
% diff_im=threshold_pocs+1;
% %iterate till er ror difference greater than thresh old

% m=0;
% while(m<5)
% m=m+1;
% %while (abs(diff_im)>threshold_pocs)
% tmp_k(1:nx-hnover,:,:)=data_pk(1:nx-hnover,:,:);
% tmp_im=fftshift(ifftn(fftshift(tmp_k)));
% %applying phase term to magnitude
% tmp_im=abs(tmp_im).*exp(1i*angle(im_ph));
% tmp_k=fftshift(fftn(fftshift(tmp_im)));
% %comparing the i m a ges
% %diff_im=abs(tmp_im-im_init);
% %e=immse(tmp_im,im_init);
% %diff_im=sum(diff_im(:).^2);
% %fprintf('Differen %f\n',diff_im);
% %fprintf('\n The mean-squared error is %0.10f\n', e);
% fprintf('\n The coil %0.10f\n', C);
% im_init=tmp_im;
% IMH(:,:,:,C) =im_init ;
% end

 % end

clear tempc tempo;
toc
end
figure(m),imshow3s(sumofsq(fftnc(DATAAc)));
figure(m+1),imshow3s(flipdim([sumofsq(IMCH)],1));
figure(m+2),imshow3s(flipdim([sumofsq(IMCH)],1)-sumofsq(fftnc(DATAAc)));
colorbar;
poc=flipdim([sumofsq(IMCH)],1)-sumofsq(fftnc(DATAAc));

Images at 100 iterations

Original image After homodyne reconstruction

Difference image showing

phase

