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Introduction 

 Because of their long duration, MR scans are sensitive to motion. Historically, numerous methods 

have been proposed to correct for this including models with elements such as translation, rotation, shear, 

and scaling. However, these techniques are often computationally intensive and difficult to implement. 

This paper uses an autofocusing algorithm that locally minimizes a given motion metric and is predicated 

on the assumption that, on a sufficiently small spatial scale, the different types of motion can be well 

approximated as simple linear translations. Possible motion paths are limited to motion measure from 

multichannel navigator data to reduce the search space. This novel navigation strategy is based on the so-

called “Butterfly” navigators, which is a modification of the spin-warp sequence in which the prewinder 

gradients for phase encodes are slightly modified to traverse the same trajectory at the beginning of each 

data acquisition. This makes it possible to obtain translational motion estimates with high temporal 

resolution. With a 32-channel abdominal coil, sufficient number of motion measurements were found to 

approximate possible linear motion paths for every voxel. This motion correction scheme was performed 

on two pediatric patients and results showed an overall reduction in artifacts from complex, nonrigid 

motion.  

 

Methods 

 Motion is first measured using the Butterfly sequence during the data acquisition. This effectively 

confines the search space and limits the computational load the program has to estimate motion with. In 

our study, a spin-war sequence with multiple repetition time is used. The Butterfly sequence effectively 

modifies the prewinder portion of the timing diagram and collects motion data during a very short period 

of time. It is named as such because of the resulting trajectory shape resembling a butterfly wing. After 

the data is collected in k-space, a series of post processing steps must occur before the information can be 

adjusted in the image domain.  

 The first of these steps is the motion correction. As a simplification, nonrigid motion is 

approximated as local linear translations rather than rotation, contraction/expansion, and other 

complicated transformations. Linear phase correction to all the acquired k-space data is performed with 

motion measurements from each coil. After correcting for different motion measurements, the next step is 

to determine which correction yielded the best result for a particular location. For this, gradient entropy is 

used as a good metric for motion artifacts. This criterion is minimized when the image consists of uniform 

brightness separated by sharp edges and has been found to be a good model for normal MR scans. 

 To obtain local translational data, the gradient entropy evaluation is performed on windowed 

sections of the scan. The scan is multiplied by a 3D Hanning window before performing the gradient 

entropy calculations. The size of this window affects the autofocusing selection. Windows sized too small 

for local anatomy can amplify motion artifacts, while larger windows allow more blurring from motion. 

Artifacts from fat at the edge of the body were present in the 2cm window and noise outside the body is 

large. At a 14cm window, the upper liver has an artifact, and the arteries are overly blurred. A window 

size of 10cm was selected for a sufficient balance between image sharpness and artifacts. A comparison 

of the effects can be seen in Figure 1. 



 
Figure 1: Effect of different window sizes on motion corrected scans. Artifacts from fat can be seen clearly in the 2cm window, as 

well as the elevated noise outside the body. In the 14cm window, a ghosting artifact appears in the upper section of the liver. The 

10cm window was selected for good balance between sharpness of the arteries and a lack of significant artifacts.  

The validity of the motion estimates was assessed with multiple phantom scans. On a stationary phantom, 

the motion estimates were confirmed to be stable. A drift of less than 250 µm was observed over 170s. A 

phantom moving in a periodically repeating linear pattern was used to verify the accuracy of the motion 

estimates against rigid motion. The algorithm accurately measured and successfully corrected for the 

motion of the phantom. 

 

Studies conducted 

The autocorrection algorithms explained in the previous sections were tested on an abdominal 

study performed on a 6-year-old patient using a three-dimensional spoiled gradient-recalled echo 

acquisition sequence. As shown in Fig. 2, translational maps of the signals recorded from the sample 

show translation along x, y and z axis. The maps indicated variation of signals from the coils for 

respiratory motion with some coils recording stationary signals originaying from the lower abdominal 

area which are usually stationary during respiratory motion. It is intuitive to think that motion in any one 

part of the body shall influence signal only on the coil in the immediate vicinity of the part. One of the 

major observations of the experiment was the fact that when motion occurs, the signal change is not only 

measured by the local coil but also registered in reduced magnitudes for adjacent coils as well. This has 

major implications in the field of MR signal processing as useful data for the sample can also be extracted 

from adjacent coils. Similar observations can be made in the last row of Fig. 3 where the number of coils 

activated during any type of motion result in signal reception for multiple coils. Also, it was found that 

correction using the nearest coil doesn’t yield the best results which indicate that motion artifact 

correction is a multicoil phenomenon. The results were also free from ghosting artifacts produced due to 

the movement of tissue/ fluid during the scan. There was some amount of blurring involved from 

corrupted higher k space frequencies which were later corrected using homodyne reconstruction. Fig. 4 

showed a similar trend with reduced artifacts and motion correction. In some areas with low signal to 

noise ratio, small amount of motion was detected by the algorithm. Whereas some artifacts were 

uncorrect as the algorithm was unable to detect the motion paths for these artifacts. Increasing the search 

space can help solve this issue. Therefore the study concluded that the best dataset to implement the 



autocorrection on butterfly trajectory is one where there are appropriate number of coils relative to the 

size of the subject which ensures an appropriate signal to noise ratio. 

  

 
Fig. 2, 3 and 4 (clockwise) 

 

 

David’s Analysis 

Introduction 

 For my individual exploration, I was interested in adjusting the navigator trajectory and analyzing 

the comparative time penalty. To do this, it was important to identify which part of the code was able to 

modify the trajectory data as well as which part contained information regarding time. For my update 

summary, I initially did a cursory read of all the script files searching for the term ‘time’ and identified a 

few candidate scripts. However, the code was written with such a complexity that I didn’t feel 

comfortable modifying its content without major errors arising. Therefore, after some guidance, I decided 

to stick with changing the example1.mat data, the contents of which are shown in the figure below.  

 

 



 

 My question associated with the above .mat file was: what is the time consequence for each coil if 

I reduced the number of k trajectories by 1/6? 1/3? Or 1/2? My hypothesis was that the measurement time 

along with the autofocusing time would decrease because there would be less data for the algorithm to 

process. However, as we will see in the results section. This was not the case for the autofocusing data.  

 

Methods 

 Specifically, I targeted the NAVA and k matrices within the example1.mat file as these seem to 

be most relevant to my goal. Using the size function in MATLAB, I determined that the NAVA matrix 

has dimension of 18x425984 while the k matrix has a dimension of 1x18. The 425984 dimension of 

NAVA corresponds to the number of phase encodes (ny) times the number of slice encodes (nz) times the 

number of coils (nc) as defined for the DATAA matrix. From this, I concluded that the NAVA matrix 

contains all the motion information captured along a three-dimensional (3D) k space trajectory, as 

specified by the k matrix. To put it visually, the NAVA matrix contains all the information collected 

along the blue lines in the following figure (Lustig et al, 2007).  

 

 
 

 For my code modification, I deleted 1/6, 1/3, and 1/2 of the rows in both NAVA and k. The code 

for deleting 1/6 of rows is shown below. These fractions were chosen based on their multiplication of the 

number 18, which is the common dimension for both NAVA and k. I also tried to perform column 

deletion in a similar manner. However, the algorithms downstream did not like this modification.  

 

 
 

Results 

Imaging Time Consequences 

 First, I will analyze the theoretical time penalty of deleting the alternating proportions of the 

butterfly sequence. The following figure shows the timing diagram of the original prewinder sequence (a) 

and the modified prewinder sequence with the Butterfly modification in yellow (b).  

 

Butterfly: A Self Navigating Cartesian Trajectory 

 

M. Lustig1, C. H. Cunningham2, E. Daniyalzade1, and J. M. Pauly1 
1Electrical Engineering, Stanford University, Stanford, CA, United States, 2Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada 

 

Introduction: Patient motion during scanning often causes 

image artifacts. Most motion artifact reduction techniques 

require additional scan time or complexity [1].  Others are 

able only detect the motion but not estimate it [1-2].  
Inspired by the approaches of [1-3], a new self-navigating 

technique for Cartesian acquisitions is proposed. The 

method can detect and measure translational motion during the scan. The method 

has a negligible scan time-penalty, and the motion estimation and correction is fast 

and simple.   It can be used as a replacement for current product pulse sequences, 

providing  motion information and correction when needed.  
 

Theory: Image translation due to motion causes a linear phase in k-space. The 

linear phase can be estimated by repeatedly acquiring the same k-space data ñ i.e, 

navigator echoes. By applying a simple modification to the spin-warp pulse 

sequence, the pre-winders and optionally the re-winders gradient waveforms can be 

used as navigators with negligible time-penalty. The phase-encodes gradient 

waveforms are modified to retrace a diagonal radial trajectory in k-space, which is 

used for navigation, as illustrated in Fig. 1. It is important that the slice refocusing 

and prewinders not overlap. The name Butterfly comes from the shape of the 

trajectory.  A 3D variant of Butterfly is illustrated at the bottom of Fig. 1. For 3D, 
the slice encode gradient is modified as well. 
 

Methods: Positive phase-encodes measure 1D translation in the top-left diagonal 

direction, negative phase encodes measure bottom-left diagonal one. To get a full 

2D translation every TR, a centric k-space ordering is used and the motion 

measurements are interpolated (for 3D, the 4 quadrants of k-space are interleaved). 

Finally the phase of each readout is corrected.  

To test our method, we scanned a knee of a volunteer using an SPGR sequence and 
the Butterfly trajectory (2DFT, TR=30ms, ReadOut=10ms, Nav-time=0.24ms, 

Flip=45, Res=300mm, Slice=2mm, NEX=4). The experiment was performed on a 
1.5T GE Signa Excite scanner using a 3-inch surface coil attached to the knee. The 

volunteer was instructed to shake his knee during the scan. In plane motion was 

estimated and the data was corrected accordingly. The result was compared to a 

non-corrected reconstruction, and a scan without intentional motion. 
 

Results: Figure 3 illustrates the results of the experiment. The rapid motion was 

estimated with sub-pixel accuracy over a large range of shifts. The corrected image 
exhibits similar high-resolution quality as the image acquired with no motion.  
 

Discussion and Conclusions: By a simple modification free navigation 

information in Cartesian imaging is obtained every TR. This information can be 

used to correct for translation motion or as acception/rejection of data.  
References:  [1] Pipe JG Magn Reson Med. 1999 Nov;42(5):963-9 [2] Brau et. el, Magn Reson Med. 

2006 ;55(2):263-70 [3] Crowe et. al, Magn Reson Med. 2004 ;52(4):782-8. 

 Figure 2: (a) No-motion. (b) Uncorrected motion. (c) Corrected motion. (d) Motion estimate 
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 The figure above is used to derive the time difference, tp, between the modified (b) and original 

(a) prewinder sequence. The overall imaging time consequence of deleting n rows of k and NAVA would 

just be n*tp.  

 To derive tp, we are first going to set up the equations based on the areas of the figure above. This 

gives us the following: 

 
 

 Next, we are going to set up the total time, ttotal, variable for (b) and combine that with equation 

A1b. Notice that there is an extra tn term. The reason for this is that the navigator data are acquired along 

one gradient axis. This gives us: 

 
 

 Finally, after modifying A2b, we get tp (ttotal-ta) to be the following: 

 
Post-Processing Time Consequences 

 To analyze the consequence of deleting alternating numbers of k and NAVA on post-processing 

time, I plotted the time outputs of the demo.m script. The values for time of motion estimate for coils 1-

32 are plotted in the following two figures.  

 
 The time consequences for autofocusing, or the gradient entropy calculation, are shown in the 

following plots: 
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 Additionally, the uncorrected and corrected image of a single slice of the image space is also 

shown in the following figure: 

 

 
 

Discussion 

 Perhaps the most interesting finding in the results section is the gradually increasing trend in the 

autofocusing time as more and more data rows are deleted. I surmise that the reason for this is that since 

the gradient entropy step takes in information from redundant translational motion estimates, deleting data 

will result in a harder time for the entropy algorithm to localize the translation data in image space. 

Without additional analysis and testing of the code, however, it seems we may not know the exact reason 

behind this increase in time. On the other hand, the median time for each coil’s measurement of 

translation shows a decreasing trend. This is expected because as data is deleted, the algorithm has less to 

process.  

 Temporal resolution refers to the frequency in which the data can be sampled. In this case, the 

data refers to the 3D k space matrices. During our presentation, Dr. Cheng asked whether when deleting 

our k space data if we would have enough information to estimate linear translation. This is a good point 

because even though it may be quicker for the MRI scanner to acquire the data, the overall TR time and 

scan time may not be decreased because these scans are respiratory gated, meaning that alternating TRs 

start with each respiratory cycle rather than being one continuous scan. Therefore, we can make the 

argument that deleting these k space rows and trajectory may not have an impact on the overall scan time 

itself. Rather, it is the post-processing times that are most impacted.   
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 Ciara’s Analysis  

Figure A: Top left v=1, top right v=1000, bottom left v = 1e8, bottom right v=1e17. Each motion estimate from a different coil is 

shown in a different color. Differences in the motion estimate are negligible, though each scaling factor has different behaviors. 

Effect of Field Inhomogeneities on Motion Estimate 
To explore the effect of field inhomogeneities on computed motion estimates, I simulated growing 

inhomogeneity over time due to field drift, a constant localized inhomogeneity such as the effect of a 

metallic implant in a patient, and an increasing localized field inhomogeneity. Since the motion estimate 

is sensitive to changes in the navigator data, these field inhomogeneities may affect the accuracy of the 

method, and this exploration will help determine the robustness of the motion estimate algorithm in scans 

with inhomogeneities. 

 

Field Drift 

Typical Bo fields experience drift on the order of 0.1ppm per hour. In the short time period of a single 

scan acquisition, this drift can be approximated to be zero. However, accumulated field drift over the 

course of a full scan, especially when total acquisition time is increased by using gated scans and the 

modified butterfly trajectory, may not be negligible in the motion estimate algorithm. This is similar to 

the effect of patient motion, where in each acquisition the patient is assumed stationary, but movement is 

possible between a series of acquisitions.  

To simulate linear field drift, I use the following equations to modify previously collected data: 

 
Where n is the acquisition number, Kn is the raw k-space data from the original code, v is a scaling factor 

to adjust the rate of field drift, and K’n is the field drift adjusted k-space data. This method assumes that in 

a single acquisition, the field drift is constant, and that between each TR frame there is a linear increase in 

field strength from the previous acquisition. To encompass a wide range of field drift speeds, values for v 

were chosen as 1, 1000, 1e8, and 1e17.  

  
 

 

𝑊𝑛 =  𝑒2𝜋𝑖𝑛𝑣5e−7 , 𝐾′𝑛 = 𝑊𝑛𝐾𝑛  

 

 

 



Though each scaling factor behaves differently qualitatively, as seen in Figure A, the motion estimate is 

largely unaffected by linear field drift. The average difference of the magnitude of the motion estimates 

for each direction is summarized in Table A below. These amounts are all negligible, and the motion 

estimate is approximately unchanged.  

v X [mm] Y [mm] Z [mm] 

1 1.3366e-14 8.5005e-15 1.6051e-15 

1000 1.2559e-14 1.0827e-14 1.6865e-15 

1e8 1.4309e-14 1.0069e-14 1.6275e-15 

1e17 1.3936e-14 1.0210e-14 1.4504e-15 
Table A: The average difference in magnitude between the original motion estimate and modified motion estimate across all 

acquisitions in the X, Y, and Z directions for each scaling factor, v. 

 

Localized Field Inhomogeneity 

Patients undergoing scans with metallic implants such as IUDs, hip implants, etc. will have artifacts in 

final scans due to local field inhomogeneities caused by the object. Should this field effect lie in the path 

of the butterfly navigators, there may be effects on the motion estimate.  

To simulate this effect, I use the following equation to modify previously collected data. 

Where m is the index of a single element of the navigator data, Kn is the raw k-space data from the 

original code, v is a scaling factor to adjust the strength of field inhomogeneity, and K’n is the 

inhomogeneous field adjusted k-space data. Only one element of the k-space data is modified. This 

equation assumes that the effect of field drift is negligible. To encompass a wide range of field 

inhomogeneities, values for v were chosen as 1, 1000, 1e8, and 1e17.  

The motion estimates behave similarly to the case with linear field drift. Effects of the localized 

inhomogeneity are negligible. Values for the average difference in the original and modified motion 

estimate are listed in Table B below. 

v X [mm] Y [mm] Z [mm] 

1 1.5029e-14 9.6746e-15 1.7342e-15 

1000 1.5349e-14 1.1488e-14 1.5759e-15 

1e8 1.4867e-14 1.1571e-14 1.6629e-15 

1e17 1.5374e-14 1.0978e-14 1.6815e-15 
Table B: The average difference in magnitude between the original motion estimate and modified motion estimate across all 

acquisitions in the X, Y, and Z directions for each scaling factor, v. 

 

Increasing Localized Field Inhomogeneity 

To simulate a growing localized field inhomogeneity, I use the following equation to modify previously 

collected data. 

 
Where m is the index of a single element of the navigator data, n is the acquisition number, Kn is the raw 

k-space data from the original code, v is a scaling factor to adjust the strength of field inhomogeneity, and 

K’n is the inhomogeneous field adjusted k-space data. Again, only one element of the k-space data is 

modified for each acquisition. This equation assumes that the local field inhomogeneity is growing 

linearly between each acquisition. To encompass a wide range of field inhomogeneity growth rates values 

for v were chosen as 1, 1000, 1e8, and 1e17.  

 

𝑊𝑚 =  𝑒2𝜋𝑖𝑣5e−7 , 𝐾′𝑛 = 𝑊𝑚𝐾𝑛  

 

 

 

𝑊𝑚 =  𝑒2𝜋𝑖𝑛𝑣5e−7 , 𝐾′𝑛 = 𝑊𝑚𝐾𝑛  
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Figure C: Left: Total motion estimates, Right: Difference in motion estimates. The scaling factor is labeled at the left of each 

pair, and motion estimate for each coil is shown in a different color. 

 

Table C: The average difference in magnitude between the original motion estimate and modified motion estimate across all 

acquisitions in the X, Y, and Z directions for each scaling factor, v. 

 

As seen in Table C, there is a significant effect on the motion estimates for scaling factors of 1000 and 

1e17, but the effects for scaling factors 1 and 1e8 are negligible. This can be seen in Figure C where the 

shape of the motion estimates for v=1 and v=1e8 are nearly identical to the original, but the motion 

estimates for v=1000 and v=1e17 are affected. For v=1000, there is a sinusoidal effect super-positioned 

over the original motion estimates. For v=1e17, the difference is in high frequency noise in the motion 

estimates of the late scans. The differences in magnitude across different scaling factors, and the periodic 

behavior of the two highest magnitude scaling factors suggest effects of resonance may influence the 

behavior of the motion estimate in cases where a localized field inhomogeneity increases over time.  

 

Field Inhomogeneities Discussion 

The method of calculating motion in the scan is robust against linear field drift and localized field 

inhomogeneities, but susceptible to influence when an increasing localized field inhomogeneity is in the 

path of the butterfly navigators as simulated above. However, these simulations are limited and simple. 

Other field drift patterns may cause more significant effects, such as a periodically repeating drift pattern. 

Additionally, localized field inhomogeneities are much more complex and would affect a larger region of 

the navigator. Though this would not affect the resultant negligible motion estimate differences in the 

temporally static case, it may affect the magnitude, resonance, or shape of the effects in the increasing 

case.  
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V X [mm] Y [mm] Z [mm] 

1 9.5693e-04 5.9160e-04 5.3510e-05 

1000  0.5921 0.4929 0.0583 

1e8 1.3958e-10 8.9889e-11 1.3694e-11 

1e17 0.1743 0.1939 0.0273 



Sujoy’s Analysis 

 Investigation on the use of Projection Onto Convex Sets (POCS) for image reconstruction 

The paper has implemented the use of homodyne reconstruction to reconstruct the image from partial k 

space. It allows the reduction of computation time for fully symmetric data. MRI images have a real 

(symmetric) and imaginary (antisymmetric) component. The key idea in the homodyne algorithm is to 

preweight the k-space data so that when we take the real part of the image data, it corresponds to a uniform 

weighting in k-space. The symmetric component can be reconstructed using conjugate symmetry property: 

 

𝑓(−𝑥) = 𝑓 ∗ (𝑥) (1) 
 

The weighting function can be also divided into ramp and step functions that become relevant for reducing 

ghosting artifact produced by materials like layers of fat. In this paper, ramp type conjugate symmetry 

preweighting function has been used. The results of homodyne algorithm have been shown in Fig. 1. The 

resultant image clearly showed organ boundaries for the 26th z layer indicating the effectiveness of the 

technique. The darker regions on the difference image indicate a higher negative phase difference between 

the original and homodyne image. These regions indicate the amount of phase correction that has been 

implemented on the image as the symmetric components cancel out. One of the major issues faced by 

homodyne reconstruction is problems associated with the interaction between phase correction and 

conjugate synthesis. This can be resolved by iterative techniques like POCS which basically constrain the 

low-resolution image space data and in the k space the data is matched to the estimate whenever it is 

available. The final estimate after multiple iterations satisfies both the criterion and leads to much sharper 

and more detailed image. In the spatial frequency domain, the phase encodes that were acquired are replace 

the present phase estimate and inverse Fourier transform of the new image is then adjusted to match that of 

the symmetric component. The image converges in very few iterations after which the noise floor is reached. 

In the present example 5/8th of k space was used for the symmetric data and different iterations of 5, 10, 15 

and 100 were tested on the autocorrected data set. As shown in Fig. 2, the blurring visible in the original 

image is observed to decrease with every iteration. The maximum possible sharpness in edges was observed 

for 15 iterations, beyond which no noticeable change in image quality was recognized. This indicates that 

the noise floor for POCS technique is reached by 15 iterations. The computational time achieved was nearly 

15 seconds. On a similar note, homodyne implementation was achieved in 6 seconds. A test performed at 

100 iterations did not indicate any major change in image properties and hence the limit for phase correction 

was reached. The results indicate that phase correction in POCS techniques is quite comparable to that 

observed in Homodyne.  

 

Original image After homodyne reconstruction 
 

Difference image showing 
phase 

 

Figure 1: Image reconstruction by homodyne technique and corresponding phase change. 



Original image 5 iterations 10 iterations 15 iterations 
 

    

Phase 5 iterations Phase 10 iterations Phase 15 iterations Phase change b/w 
Homodyne and POCS 

 

Figure 2: Image reconstruction by POCS technique and corresponding phase change. 

Comparing the phase change between homodyne and POCS in Fig. 2 shows the white regions where 

homodyne has performed more phase correction than POCS and the black regions are areas where POCS 

correction dominates. This variation in phase correction can be explained by the feature of homodyne 

algorithm to utilize high frequency components in preweighting function, which are more abundant in the 

center of the k space. The symmetric data obtained for partial image reconstruction lies at this center, which 

makes the features of the final image sharper than POCS technique. Also, the motion artifacts in the image 

possibly contribute to wrongful estimation of vessel boundaries with actual motion parameters. Apart from 

minor phase inconsistencies, both the techniques provide similar phase correction and hence, can be used 

interchangeably. It can be concluded from the experiments performed in the data set that Homodyne 

technique used in this paper has been more effective in reducing ghosting artifacts and obtaining greater 

image sharpness than POCS technique. The computational time advantage is also another consideration 

that is relevant for cases involving autocorrection for images where dynamic motion is observed. The POCS 

technique can further be improved in the future by increasing the number of coils and consequent increase 

of pixels generates that can provide a large sample space for greater signal to noise ratio. 
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Supplementary Document 

Homodyne implementation 
 

%% runMotionAutofocus.m script 
%%  This is an example of perfoming autofocusing motion 
%%  correction using the localized gradient entropy criterion. 
%% 
%%  Run this script after executing runBflyMotionEstimate.m. 
%%  This example uses motionAutofocus.m which is a completely  
%%  matlab-based implementation of the algorithm. A compilable  
%%  mex version (with omp/acml/cuda) is available that runs  
%%  significantly faster. 
%% 
%% (c) Joseph Y Cheng (jycheng@mrsrl.stanford.edu) 2012 

  
%% SVN info:  
%%   Date:     $Date: 2012-02-17 17:04:40 -0800 (Fri, 17 Feb 2012) $ 
%%   Revision: $Revision: 1084 $ 
%%   Author:   $Author: jycheng $ 
%%   Id:       $Id: runMotionAutofocus.m 1084 2012-02-18 01:04:40Z jycheng $ 

  

  
%% example1.mat was acquired with partial k-space in the readout 
%% direction. Fortunately, the homodyne reconstruction can be  
%% performed post-autofocusing because the autofocusing algorithm 
%% depends heavily on the high-frequency contents. 

  
DEBUG_MOTION = 220; 
KERNRMM      = 40; 

  
KERNR = round(KERNRMM./res); 

  
% Zero-fill partial k-space 
%DATAAh = [zeros(nFRead-nx,ny,nz,nc); DATAA]; 

  
% Perform autofocusing! 
dbdisp('starting autofocusing...'); 
[IMC,MOUT] = motionAutofocus3(DATAAc,DDX,DDY,DDZ,... 
                              yorder,zorder,KERNR,... 
                              DEBUG_MOTION); 

  
% Perform homodyne recon 
dbdisp('starting homodyne recon...'); 
tic; 
IMH  = DATAAc; 
IMCH = IMC; 
for C=1:size(IMC,4) 
    tempc = fftnc(IMC(:,:,:,C)); 
    IMCH(:,:,:,C) = homodyne3D(tempc(end-nx+1:end,:,:),nFRead,1); 
    tempo = (IMH(:,:,:,C)); 
    IMH(:,:,:,C) = homodyne3D(tempo(end-nx+1:end,:,:),nFRead,1); 
end 
clear tempc tempo; 



toc 

  
%figure(DEBUG_MOTION+10),imshow3s(flipdim([sumofsq(IMH) sumofsq(IMCH)],1)); 
figure(m),imshow3s(sumofsq(fftnc(DATAAc))); 
figure(m+1),imshow3s(flipdim([sumofsq(IMCH)],1)); 
figure(m+2),imshow3s(flipdim([sumofsq(IMCH)],1)-sumofsq(fftnc(DATAAc))); 
colorbar; 

 

POCS implementation 
 

  
%% example1.mat was acquired with partial k-space in the readout 
%% direction. Fortunately, the homodyne reconstruction can be  
%% performed post-autofocusing because the autofocusing algorithm 
%% depends heavily on the high-frequency contents. 

  
DEBUG_MOTION = 220; 
KERNRMM      = 40; 

  
KERNR = round(KERNRMM./res); 

  
% Zero-fill partial k-space 
%DATAAh = [zeros(nFRead-nx,ny,nz,nc); DATAA]; 

  
% % Perform autofocusing! 
dbdisp('starting autofocusing...'); 
[IMC,MOUT] = motionAutofocus3(DATAAc,DDX,DDY,DDZ,... 
                              yorder,zorder,KERNR,... 
                              DEBUG_MOTION); 

  
%Perform POCS recon 
dbdisp('starting POCS recon...'); 
tic; 
IMH  = DATAAc; %DATAAC is K space 
IMCH = IMC; 
%st=size(IMC,4); 
for C=1:size(IMC,4) 
     tempc = fftnc(IMC(:,:,:,C)); 
     m=0; 

     
%     IMCH(:,:,:,C) = pocs3d(tempc(end-nx+1:end,:,:),nFRead,1); 
    tempo = (IMH(:,:,:,C)); 
%     IMH(:,:,:,C) = pocs3d(tempo(end-nx+1:end,:,:),nFRead,1); 

  

    
   % for sli=1:size(tempc,3) 

     
        hnover=0.625*nx; 

  
        data_pk=tempc(:,:,:); 
        %noise limit 
        threshold_pocs=1; 
        %zero padding first guess 
        im_init=fftshift(ifftn(fftshift(data_pk))); 



        %using phase term on magnitude 

  
        data_pk(1+nx-hnover:end,:,:)=0; 
        %center the symmetric data 
        data_center=data_pk; 
        data_center(1:hnover,:,:)=0; 
        im_ph=fftshift(ifftn(fftshift(data_center))); 

  
        im_init=abs(im_init).*exp(1i*angle(im_ph)); 
        tmp_k=fftshift(fftn(fftshift(im_init))); 
        diff_im=threshold_pocs+1; 
        %iterate till er ror difference greater than thresh old 
        while(m<15) 
            m=m+1; 
%         while (abs(diff_im)>threshold_pocs) 
            tmp_k(1:nx-hnover,:,:)=data_pk(1:nx-hnover,:,:); 
            tmp_im=fftshift(ifftn(fftshift(tmp_k))); 
            %applying phase term to magnitude 
            tmp_im=abs(tmp_im).*exp(1i*angle(im_ph)); 
            tmp_k=fftshift(fftn(fftshift(tmp_im))); 
            %comparing the i m a ges 
            %diff_im=abs(tmp_im-im_init); 
            %e=immse(tmp_im,im_init); 
            %diff_im=sum(diff_im(:).^2); 
            %fprintf('Differen %f\n',diff_im); 
            %fprintf('\n The mean-squared error is %0.10f\n', e); 
            fprintf('\n The coil %0.10f\n', C); 
            fprintf('\n The z %0.10f\n', m); 
            %fprintf('\n The si %0.10f\n', st); 
            im_init=tmp_im; 
        IMCH(:,:,:,C) =im_init ; 
        end 

         
    %end 

  
       % for sli=1:size(tempo,3) 

     
%         hnover=0.625*nx; 
%  
%         data_pk=tempo(:,:,:); 
%         %noise limit 
%         threshold_pocs=1; 
%         %zero padding first guess 
%         im_init=fftshift(ifftn(fftshift(data_pk))); 
%         %using phase term on magnitude 
%  
%         data_pk(1+nx-hnover:end,:,:)=0; 
%         %center the symmetric data 
%         data_center=data_pk; 
%         data_center(1:hnover,:,:)=0; 
%         im_ph=fftshift(ifftn(fftshift(data_center))); 
%  
%         im_init=abs(im_init).*exp(1i*angle(im_ph)); 
%         tmp_k=fftshift(fftn(fftshift(im_init))); 
%         diff_im=threshold_pocs+1; 
%         %iterate till er ror difference greater than thresh old 



%         m=0; 
%         while(m<5) 
%             m=m+1; 
%         %while (abs(diff_im)>threshold_pocs) 
%             tmp_k(1:nx-hnover,:,:)=data_pk(1:nx-hnover,:,:); 
%             tmp_im=fftshift(ifftn(fftshift(tmp_k))); 
%             %applying phase term to magnitude 
%             tmp_im=abs(tmp_im).*exp(1i*angle(im_ph)); 
%             tmp_k=fftshift(fftn(fftshift(tmp_im))); 
%             %comparing the i m a ges 
%             %diff_im=abs(tmp_im-im_init); 
%             %e=immse(tmp_im,im_init); 
%             %diff_im=sum(diff_im(:).^2); 
%             %fprintf('Differen %f\n',diff_im); 
%             %fprintf('\n The mean-squared error is %0.10f\n', e); 
%             fprintf('\n The coil %0.10f\n', C); 
%             im_init=tmp_im; 
%         IMH(:,:,:,C) =im_init ; 
%         end 

         
   % end 

  
clear tempc tempo; 
toc 
end 
figure(m),imshow3s(sumofsq(fftnc(DATAAc))); 
figure(m+1),imshow3s(flipdim([sumofsq(IMCH)],1)); 
figure(m+2),imshow3s(flipdim([sumofsq(IMCH)],1)-sumofsq(fftnc(DATAAc))); 
colorbar; 
poc=flipdim([sumofsq(IMCH)],1)-sumofsq(fftnc(DATAAc)); 

 

 

Images at 100 iterations 

 

Original image After homodyne reconstruction 

 

Difference image showing 

phase 

 


